

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE

WYDZIAŁ INŻYNIERII MECHANICZNEJ I MECHATRONIKI

KATEDRA TECHNIKI CIEPLNEJ

PRACA DOKTORSKA

Analiza i ocena termodynamiczna efektywności pracy nisko i średniotemperaturowej siłowni parowej z obiegiem nadkrytycznym

mgr inż. Szymon Mocarski

Promotor: dr hab. inż. Aleksandra Borsukiewicz Promotor pomocniczy: dr inż. Sławomir Wiśniewski

Szczecin 2019

SPIS TR	EŚCI:	
WAZNIEJ	SZE OZNACZENIA	4
1. WS	ΤĘΡ	7
1.1.	Wykorzystanie energii geotermalnej do zasilania siłowni ORC	8
1.2.	Wykorzystanie energii odpadowej do zasilania siłowni ORC	9
1.3.	Wykorzystanie energii słonecznej do zasilania siłowni ORC	12
1.4.	Wykorzystanie biomasy do zasilania siłowni ORC	13
1.4.1	Spalanie biomasy	
1.4.2	Wytwarzanie biogazu	14
1.5.	Podsumowanie	14
2. PRZ	EGLĄD LITERATURY DOTYCZĄCEJ ZASTOSOWANIA NADKRYTYCZNEGO OBIEGU CLAUSIUSA	۱-
RANKINE	'A	16
2.1.	Analiza termodynamiczna obiegu nadkrytycznego w zależności od charakterystyki źródła ci	iepła16
2.1.1	Nadkrytyczne siłownie ORC zasilane energią geotermalną	17
2.1.2	Nadkrytyczne siłownie ORC zasilane energią odpadową	18
2.1.3	Nadkrytyczne siłownie ORC zasilane energią słoneczną	19
2.1.4	Nadkrytyczne siłownie ORC zasilane energią pochodzącą ze spalania biomasy	19
2.2.	Analiza termodynamiczna obiegu nadkrytycznego w zależności od rodzaju czynnika robocz	ego 19
2.2.1	Powierzchnia wymiany ciepła	20
2.2.2	Praca pompy obiegowej	21
2.2.3	Inne aspekty pracy siłowni ORC z obiegiem nadkrytycznym	21
2.2.4	CO ₂ jako czynnik roboczy	21
2.2.5	Mieszaniny zeotropowe jako czynnikirobocze	22
2.3.	Analiza termodynamiczna obiegu nadkrytycznego pod kątem efektywności pracy siłowni	23
2.4.	Wnioski z przeglądu literatury	26
3. OBI	EGI PORÓWNAWCZE NISKOTEMPERATUROWYCH SIŁOWNI PAROWYCH	27
3.1.	Obszar nadkrytyczny	29
3.2.	Obiegi nadkrytyczne jednofazowe	29
3.3.	Obiegi nadkrytyczne dwufazowe	30
3.4.	Nadkrytyczny obieg Clausiusa- Rankine'a	31
4. ŹRĆ	DŁO CIEPŁA	35
5. CEL	I ZAKRES PRACY	36
6. ZAŁ	OŻENIA POCZĄTKOWE	38
6.1.	Założenia początkowe	38
6.2.	Charakterystyka czynników roboczych objętych analiza	39
7. MO	DEL MATEMATYCZNY SIŁOWNI PAROWEJ PRACUJACEJ WG OBIEGU NADKRYTYCZNEGO	
CLAUSIU	SA - RANKINE'A	41
7.1.	Metodyka wyznaczania kalorycznych i termicznych parametrów stanu	42
7.2.	Entalpie nośnika energii oraz czynnika roboczego	44
8. AN	ALIZA TERMODYNAMICZNA NADKRYTYCZNEGO OBIEGU - CLAUSIUSA- RANKINE'A	46

8.1	•	Możliwości realizacji nadkrytycznego obiegu Clausiusa- Rankine'a	46
8.2		Wpływ temperatury źródła ciepła	48
٤	8.2.1.	Moc obiegu	48
8	8.2.2.	Sprawność obiegu	50
8	8.2.3.	Natężenie przepływu czynnika roboczego	52
8	8.2.4.	Moc przetłaczania	53
8.3		Wpływ wartości ciśnienia górnego	55
8	8.3.1.	Moc obiegu	56
٤	8.3.2.	Sprawność obiegu	58
8	8.3.3.	Natężenie przepływu czynnika roboczego	60
84	8.3.4.	Analiza siłowni z ORC z obiegiem podkrytycznym	63
8.5		Amoniak w obiegu nadkrytycznym	67
8.6		Prace jednostkowe pompy, turbiny i objegu	69
8.7		Potrzeby własne siłowni.	72
8.8		, Wpływ temperatury skraplania	73
8.9		Optymalna wartość ciśnienia górnego	75
9. /			79
9.1		Strumień strat egzergii w turbinie	80
9.2		Strumień strat egzergii w skraplaczu	81
9.3		Strumień strat egzergii w pompie	83
9.4		Strumień strat egzergii w nadkrytycznym wymienniku ciepła	84
9.5		Sprawność egzergetyczna siłowni, strata wynikające z niewykorzystania użytecznego produktu	85
9.6		Wyniki analizy egzergetycznej nadkrytycznego obiegu Clausiusa-Rankine'a	88
10.	PC	DDSUMOWANIE I WNIOSKI KOŃCOWE	99
10.	1.	Wnioski dotyczące wpływu temperatury pary czynnika roboczego na wlocie do turbiny 1	.00
10.	2.	Wnioski dotyczące porównania obiegu nadkrytycznego i podkrytycznego	.00
10.	3.	Wnioski dotyczące stosowania różnych rodzajów czynników	.01
10.	4.	Wnioski dotyczące zastosowania amoniaku w obiegu nadkrytycznym 1	.01
10.	5.	Uwagi dotyczące doboru parametrów pracy obiegu nadkrytycznego w przypadku niektórych czynników roboczych1	.01
10.	6.	Pozostałe wnioski 1	.02
BIBLIC	DGRA	AFIA 1	.05
SPIS T	ABEI	L 1	.14
SPIS R	RYSUI	NKÓW	.15

WAŻNIEJSZE OZNACZENIA

- c_p właściwa pojemność cieplna [kJ/(kg·K)]
- h entalpia właściwa [kJ/kg]
- H strumień entalpii (kW)
- m strumień masowy substancji [kg/s]
- N moc [kW]
- Q strumień ciepła [kW]
- s entropia właściwa [kJ/(kg·K)]
- t temperatura [°C]
- η sprawność [%]
- x stopień suchości pary [-]

indeksy dolne:

- C-R dotyczy obiegu Clausiusa-Rankine'a,
- c dotyczy medium chłodzącego,
- d dotyczy strumienia doprowadzanego,
- gr wielkość graniczna,
- j dotyczy wielkości jednostkowych (właściwych)
- kr dotyczy wartości krytycznych,
- max wielkość maksymalna,
- min wielkość minimalna,
- n dotyczy roboczej czynnika roboczego,
- p dotyczy pompy,
- s dotyczy wody będącej nośnikiem energii,
- śr wielkość pośrednia,
- t dotyczy turbiny,
- w dotyczy strumienia wyprowadzanego,
- 1, 2, 2s, 3, 4s –punkty charakterystyczne obiegu.

oznaczenia stosowane przy analizie egzergetycznej:

- b egzergia właściwa czynnika roboczego
 - bi dotyczy egzergii właściwej czynnika roboczego doprowadzonego do układu
 - be dotyczy egzergii właściwej czynnika roboczego odprowadzonego z układu

B	strumień eg	zergii
	Ė _{Z1}	strumień egzergii czynnika roboczego doprowadzonej do
		wymiennika nadkrytycznego
	₿ _{Z2}	strumień gzergii czynnika roboczego odprowadzonej z wymiennika
		nadkrytycznego
	B _{źródł}	a strumień egzergii źródła ciepła
I	praca	
	l _{t,teo}	praca teoretyczna turbogeneratora
	l _{t,el}	praca rzeczywista turbogeneratora
	I _{p,teo}	praca teoretyczna pompy
	l _{p,el}	praca elektrycznapompy
N	moc elektry	czna lub mechaniczna
	N _{t,teo}	moc teoretyczna turbogeneratora
	N _{t,el}	moc elektryczna turbogeneratora
	N _{p,tec}	moc teoretyczna pompy
	N _{p,el}	moc elektryczna pompy
Т	temperatura	
	T _{ot}	temperatura otoczenia
	T _{smin}	minimalna temperatura nośnika energii
	T _{z1}	temperatura czynnika roboczego na wlocie do wymiennika
		nadkrytycznego
	T _{z2}	temperatura czynnika roboczego na wylocie z wymiennika
		nadkrytycznego
	\overline{T}_{wn}	średnia temperatura podgrzewania czynnika
	\overline{T}_{sm}	średnia temperatura ochładzania i skraplania czynnika roboczego
Q	strumień cie	pła
	Qs	strumień ciepła przekazywanego w skraplaczu
	Qwn	strumień ciepłaprzekazywany w wymienniku nadkrytycznym
η	sprawność	
	η _i	sprawność wewnętrzna turbiny
	η _m	sprawność mechaniczna turbiny
	η _g	sprawność generatora
	η _t	sprawność turbogeneratora
	η _p	sprawność pompy
	η _{ex}	sprawność egzergetyczna
	η _{th}	sprawność termiczna
ΔĠ	zmiana strui	nienia egzergii
	ΔĠz	zmiana strumienia egzergii zewnętrznego źródła ciepła działającego
		na osłonie kontrolnej

- $\Delta \dot{B}_t$ zmiana egzergii czynnika termodynamicznego w turbinie
- $\Delta \dot{B}_{Zpre}$ zmiana egzergii nośnika energii w podgrzewaczu

ΔB_{zs} zmiana egzergii otoczenia

 $\Delta \dot{B}_{Zwn}$ zmiana egzergii nośnika energii w wymienniku nadkrytycznym

- δB strumień straty egzergii
 - δB

 strumień wewnętrznej straty egzergii spowodowanej przemianami nieodwracalnymi przebiegającymi wewnątrz osłony kontrolnej układu
 - δB_E strumień zewnętrznej straty egzergii wynikającej z niewykorzystania produktu odpadowego
 - δB_Q strata wynikająca z wymiany ciepła w warunkach skończonej różnicy temperatur
 - δB_{lt} strumień wewnętrznej straty egzergii przemiany w turbinie
 - δB_{ls} strumień wewnętrznej straty egzergii przemiany w skraplaczu
 - δB_{Qs} strumień strat egzergii wynikających z nieodwracalności przekazywania ciepła
 - $\delta\dot{B}_{lp}$ strumień wewnętrznej straty egzergii przemiany w pompie
 - $\delta \dot{B}_{lwn}$ strumień strat wewnętrznych egzergii
 - δB_{Qwn} strumień strat egzergii wynikających z nieodwracalności przekazywania ciepła

1. WSTĘP

Ograniczanie zużycia paliw kopalnych w produkcji energii użytkowej stanowi obecnie poważne wyzwanie i jest celem nie tylko badawczym ale także społeczno-politycznym. Jest to ważne ze względu na ogólny wzrost zużycia energii na świecie i związany z tym wzrost emisji zanieczyszczeń do środowiska i zmniejszanie się zasobów paliw naturalnych. Jednym ze sposobów umożliwiającym, po części, osiągnięcie tego celu jest wykorzystanie siłowni ORC, które w wielu przypadkach pozwalają zagospodarować energię niskoi średniotemperaturową. Wykorzystanie tego typu energii w inny sposób byłoby trudne lub niemożliwe. Siłownie ORC pozwalają na bezemisyjną produkcję energii elektrycznej z wykorzystaniem źródeł energii geotermalnej, słonecznej, wykorzystanie ciepła odpadowego spalin lub innego medium o podwyższonej temperaturze. Ciekawym pomysłem może być wykorzystanie siłowi ORC jako obiegu wtórnego, współpracującego z siłownią zasilaną ze źródła wysokotemperaturowego, w celu zwiększenia ogólnej sprawności procesu. Są to jedynie przykłady możliwych zastosowań siłowni ORC jednak możliwości konfiguracji i modyfikacji obiegu podstawowego jest wiele, co stanowi kolejną zaletę, dzięki której parametry pracy siłowni mogą zostać dostosowane do charakterystyki danego źródła ciepła.

W przypadku siłowni ORC jako zaletę można podać różnorodność oraz ilość substancji, które mogą być wykorzystane jako czynnik roboczy, ponieważ efektywność pracy siłowni w znacznym stopniu zależy od odpowiednio dobranego czynnika roboczego. Daje to pewną swobodę przy konfiguracji siłowni oraz stwarza możliwości podwyższania efektywności pracy siłowni. Ponadto możliwe jest łączenie dwu lub więcej substancji jednorodnych w mieszaniny zeo- lub azeotropowe oraz opracowywanie zupełnie nowych substancji, co w jeszcze większym stopniu poszerza wszechstronność zastosowania siłowni ORC oraz daje perspektywy ciągłego rozwoju.

Niestety mimo wielu zalet, głównym problemem siłowni ORC jest niska sprawność procesu konwersji energii, dlatego wciąż trwają prace nad możliwościami jej zwiększenia. Oprócz podstawowych metod zwiększania sprawności i mocy jak: podwyższanie temperatury parowania czynnika, obniżanie temperatury skraplania, przegrzewanie pary, stosowanie wewnętrznej regeneracji ciepła, ciekawym pomysłem może okazać się zastosowanie obiegu nadkrytycznego, który jest dobrze poznany i z powodzeniem stosowany w przypadku siłowni parowych wodnych. Obieg nadkrytyczny w siłowni ORC może okazać się ciekawą alternatywą dla, obecnie dość powszechnie stosowanego, obiegu podkrytycznego.

1.1. Wykorzystanie energii geotermalnej do zasilania siłowni ORC

Wykorzystanie energii geotermalnej jest problematyczne i wiąże się z koniecznością pokonania pewnych trudności, wynikających z eksploatacji złóż geotermalnych. Podstawowymi problemami mogącymi w znaczący sposób wpłynąć na opłacalność, powodzenie, bądź niepowodzenie ewentualnego przedsięwzięcia związanego z wykorzystaniem energii z wnętrza ziemi są:

- wysokie koszty wykonania odwiertu o odpowiedniej głębokości, pozwalającego uzyskać strumień nośnika energii o odpowiedniej temperaturze,
- brak pewności, co do zakładanej wartości temperatury złoża geotermalnego na danym obszarze i głębokości,
- mineralizacja wody geotermalnej,mogąca w znaczący sposób wpłynąć na właściwości korozyjne pozyskiwanej wody geotermalnej oraz utrudnić eksploatację złoża geotermalnego.

Są to czynniki, które powodują poważne wątpliwości przy planowaniu inwestycji związanych z wykorzystaniem energii geotermalnej i skutecznie hamują rozwój w tym kierunku. Pomijając jednak trudności natury technicznej można powiedzieć, że energia geotermalna jest jednym z najbardziej ekologicznych i przyjaznych środowisku naturalnemu źródeł energii ze wszystkich znanych obecnie odnawialnych i niekonwencjonalnych źródeł energii, a przy odpowiednim i umiejętnym wykorzystaniu może być jednym z bardziej opłacalnych ekonomicznie.

Obecnie, szczególnie na terenie Polski, największy udział wykorzystania energii geotermalnej związany jest z ciepłownictwem oraz do celów leczniczych. Związane jest to z wysokimi nakładami finansowymi koniecznymi do wykonania otworu geotermalnego o odpowiedniej głębokości, zapewniającego wystarczająco wysoką temperaturę cieczy geotermalnej, tak aby można ją było wykorzystać jako źródła energii dla produkcji energii elektrycznej.

Wykorzystanie źródeł energii nisko- i średniotemperaturowych (do których zaliczane są źródła energii geotermalnej) w produkcji energii elektrycznej z wykorzystaniem konwencjonalnych metod nie jest możliwe, jednak wykorzystanie do tego celu siłowni ORC może okazać się skuteczne [9]. Możliwe jest wykorzystanie zasobów zlokalizowanych na mniejszej głębokości bądź wykorzystanie już istniejących odwiertów, co może stanowczo zmniejszyć koszty inwestycyjne. Jak podano w Atlasie zasobów geotermalnych na niżu Polskim [41], na terenie samej tylko Polski znajduje się 5030 otworów wiertniczych, z czego 2831 ma udokumentowany dostęp do zbiorników wód geotermalnych.

Ponadto wykorzystanie źródeł zlokalizowanych głębiej, a co za tym idzie o odpowiednio wyższej temperaturze może pozwolić na skojarzoną produkcję energii elektrycznej i ciepła, co można zrealizować na dwa sposoby, przedstawione na rysunku 1.

Pierwszy sposób przedstawiony na rysunku 1a) polega na wykorzystaniu energii wynikającejz podwyższonej temperatury wykorzystanej wody geotermalnej, w zależności od rozwiązania, opuszczającej wymiennik geotermalny bądź wymienniki wytwornicy pary siłowni ORC, przed ponownym zatłaczaniem do gruntu bądź innym sposobem jej utylizacji (co jest uzależnione od tego, czy systemem jest jedno- czy dwuotworowy). Drugi sposób, przedstawiony na rysunku 1b) polega na wykorzystaniu energii, wynikającej z podwyższonej temperatury czynnika roboczego opuszczającego turbinę siłowni, przed skierowaniem go do skraplacza.

Skojarzona produkcja energii elektrycznej i ciepła z wykorzystaniem geotermalnego źródła energii jest możliwa tylko w przypadku źródeł o stosunkowo wysokiej temperaturze i jest to kolejny aspekt wprowadzający dodatkowe komplikacje i problemy przy wykorzystaniu energii geotermalnej, jednak umiejętne zaplanowanie i zaprojektowanie instalacji może okazać się korzystne.

1.2. Wykorzystanie energii odpadowej do zasilania siłowni ORC

Zjawisko występowania energii odpadowej jest powszechne lecz dotychczas często było bagatelizowane i/lub ignorowane. Powodem takiego stanu rzeczy jest niejednokrotnie brak koncepcji na korzystne zagospodarowanie energii odpadowej, lub brak świadomości, że inwestycja w system zagospodarowania energii odpadowej może w perspektywie czasu stać się źródłem zysku. W technice cieplnej nie występują procesy odwracalne, z tego względu straty energii w postaci energii odpadowej są nieuniknione. Stwarza to szereg problemów oraz generuje straty finansowe, jednak zastosowanie siłowni ORC zasilanej ciepłem odpadowym może ograniczyć straty. Teoretycznie, odzysk energii odpadowej jest możliwy praktycznie wszędzie tam gdzie jest ona emitowana. Przykładowo mogą to być huty szkła, huty metali, cementownie, zakłady koksownicze, zakłady petrochemiczne a nawet tartaki, w których prowadzony jest proces suszenia drewna w strumieniu gorących par,gazów czy powietrza.

Zainstalowanie siłowni ORC w przedsiębiorstwie, które generuje energię odpadową może odbywać się niezależnie od pracy zakładu, a połączenie obu systemów może nastąpić dopiero w końcowym etapie wykonania, co pozwala zapobiec długim przestojom w pracy zakładu. Ponadto zastosowanie siłowni ORC ma tę zaletę, że jej konstrukcję i parametry można niemal w dowolny sposób dostosować do parametrów źródła ciepła.

Nośnikiem energii odpadowej w zależności od charakteru procesu, w którym ona powstaje mogą być wszelkiego rodzaju substancje o podwyższonej temperaturze takie jak: gazy spalinowe, powietrze, inne gazy po-procesowe, para wodna, woda, lub inne substancje ciekłe jak na przykład oleje termalne.

Podstawowym sposobem wykorzystania energii odpadowej na potrzeby siłowni ORC jest wykorzystanie podwyższonej temperatury gazów spalinowych, poprzez zastosowanie wymiennika ciepła, w którym energia spalin przekazywana byłoby do innego medium a następnie kierowana do wymiennika ciepła będącego wytwornicą pary siłowni ORC. Schemat takiego rozwiązania przedstawiono na rysunku 2. Zastosowanie medium pośredniczącego ma na celu ochronę czynnika organicznego przed zbyt dużymi wahaniami temperatury, co w konsekwencji może doprowadzić do rozkładu termicznego płynu roboczego.

Rysunek 2. Wykorzystanie spalin do zasilania siłowni ORC

Kolejnym sposobem zagospodarowania energii odpadowej z wykorzystaniem siłowni ORC jest zastosowanie jej jako obiegu wtórnego we współpracy z wysokotemperaturowym obiegiem pierwotnym. Nośnikiem energii dla obiegu wtórnego przy takim rozwiązaniu

może być woda i/lub para wodna opuszczająca turbinę, np. para z upustu (rys. 3a), woda opuszczająca skraplacz (rys. 3b) a nawet woda opuszczająca ostatni stopień regeneracji wewnętrznej (rys. 3c) obiegu pierwotnego, w przypadku gdy jej zastosowanie w obiegu pierwotnym nie spowoduje zbytniego wychłodzenia wody.

Rysunek 3. Różne warianty zastosowania siłowni ORC jako obiegu wtórnego

Źródłem energii odpadowej może być również woda chłodząca silniki wysokoprężny oraz spaliny z takiego silnika [11, 12, 28, 29, 30, 32, 74, 75, 91, 103, 106, 119, 127, 128, 131]. Zastosowanie dodatkowego elementu w postaci siłowni ORC wpływa na wzrost sprawności procesu. Rozwiązanie to może być stosowane, na przykład, w biogazowi rolniczej, gdzie energia elektryczna produkowana jest poprzez spalanie biogazu w silniku a powstała przy chłodzeniu silnika energia odpadowa kierowana jest do sieci ciepłowniczej ale w pełni wykorzystywana jedynie w sezonie ogrzewczym. Poza sezonem grzewczym, lub na obszarach gdzie nie ma zbytu na ciepło grzewcze zagospodarować to ciepło można poprzez zastosowaniu siłowni ORC.

Kolejnym ciekawym zastosowaniem siłowni ORC w celu ograniczenia strat spowodowanych emisją energii odpadowej jest wykorzystanie siłowni w tartaku lub innym zakładzie obróbki drewna, w którym prowadzony jest proces suszenia drewna [10, 13, 143, 144]. W takim przypadku możliwe jest zasilanie siłowni ORC strumieniem ciepła odpadowego powstałym w wyniku procesu suszenia drewna (rys. 4a) albo zasilanie suszarni strumieniem ciepła pozyskiwanym w skraplaczu siłowni ORC (rys. 4b). Wybór wariantu w tym przypadku zależy przede wszystkim od parametrów procesu suszenia (rodzaju suszarni) i systemu energetycznego dotychczas stosowanego w zakładzie przerobu drewna.

Rysunek 4. Przykłady zastosowania siłowni ORC w suszarnictwie przemyśle drzewnym

Wariant przedstawiony na rysunku 4a stosować można wszędzie tam, gdzie wymagana jest wysoka temperatura suszenia, natomiast wariant 4b) w przypadku gdy ta temperatura powinna być niższa.

Ponadto analizując rysunek 4b można zauważyć, że jest to typowy układ kogeneracyjny, w którym następuje skojarzone wytwarzanie energii elektrycznej i ciepła. Takie rozwiązanie może być stosowane nie tylko przy okazji suszenia drewna ale i w każdym zakładzie przemysłowym prowadzącym energochłonne procesy, na przykład, poza suszeniem drewna: suszenie innych materiałów w podwyższonej temperaturze, wypalanie lub wygrzewanie materiałów, hartowanie lub odpuszczanie stali, wytapianie metali i produkcja szkła, wypalanie klinkieru oraz inne temu podobne.

Praktyczne zastosowanie siłowni ORC do zagospodarowania energii odpadowej można przedstawić na wielu przykładach już wdrożonych układów jak choćby 1,5MW układ firmy Turboden pracujący w Zielonogórskim zakładzie Stelmet Bioenergia Sp. Z o.o. zajmującym się produkcją peletu [143, 144].

1.3. Wykorzystanie energii słonecznej do zasilania siłowni ORC

Wykorzystanie energii słonecznej do zasilania siłowni ORC jest możliwe i stosowane jednak jedynie na obszarach występowania wysokiego usłonecznienia [34, 44]. Wykorzystanie tego rodzaju źródła energii napędowej na pozostałych obszarach z uwagi na okresową i trudną do przewidzenia dostępność do energii słonecznej może okazać się niekorzystne, nieekonomiczne lub niemożliwe w praktycznej realizacji.

Niemniej jednak skupiając się jedynie na możliwościach wykorzystania tego rodzaju źródła ciepła do zasilania siłowni ORC należy wspomnieć o podstawowych metodach pozyskiwania energii słonecznej na potrzeby zasilania siłowni ORC, jakimi są:

- kolektory słoneczne standardowe płaskie oraz próżniowe [39, 50, 84, 99, 116, 134]
 stosowane są głównie w produkcji energii cieplnej na potrzeby ciepłej wody użytkowej jednak w obszarach wysokich średniorocznych temperatur powietrza atmosferycznego oraz wysokiego usłonecznienia mogą być z powodzeniem stosowane w charakterze nisko- a nawet średniotemperaturowego źródła ciepła dla siłowni ORC,
- kolektory skupiające [59, 68, 97] jest to odmiana kolektorów płaskich, w których występuje paraboliczne zwierciadło skupiające promieniowanie słoneczne na powierzchnię przewodu rurowego będącego odbiornikiem ciepła słonecznego. Zaletą tego rozwiązania jest możliwość uzyskania wyższej temperatury czynnika, a co za tym idzie wyższe parametry pary,
- wieża słoneczna [25, 77, 92, 125] rozwiązanie tego typu polega na umieszczeniu centralnego odbiornika promieniowania na pewnej wysokości, którego zadaniem jest odbiór promieniowania słonecznego skupionego na nim przez zwierciadła ustawione na powierzchni ziemi. Zaletą tego rozwiązania jest bardzo wysoka możliwa do uzyskania temperatura pary przez co może ono funkcjonować także z obiegiem wodnym. Dzięki temu siłownia ORC może służyć jako obieg wtórny w celu poprawy sprawności lub jako obieg pracujący w nocy wykorzystujący nadmiar ciepła zmagazynowanego w ciągu dnia.

Są to tylko podstawowe sposoby wykorzystania promieniowania słonecznego do zasilania siłowni ORC, jednak pokazują, że takie rozwiązanie jest możliwe i w wybranych lokalizacjach stosowane.

1.4. Wykorzystanie biomasy do zasilania siłowni ORC

Wykorzystanie biomasy do zasilania siłowni ORC stanowi dość obszerne zagadnienie, z uwagi na dużą różnorodność materii uwzględnianej w definicji biomasy, a co za tym idzie różnorodność sposobów jej wykorzystania. Dwa podstawowe sposoby wykorzystania biomasy mogące współpracować z siłownią ORC jako źródło ciepła to spalanie biomasy oraz wytwarzanie biogazu.

1.4.1. Spalanie biomasy

Spalanie biomasy jest najprostszym i najstarszym sposobem jej energetycznego wykorzystywania. Biomasa w postaci drewna była pierwszym paliwem stosowanym powszechnie do celów ogrzewczych.

Zastosowanie biomasy do zasilania siłowni ORC sprowadza się do spalenia jej w kotle na biomasę, w wyniku czego następuje podgrzanie czynnika pośredniczącego, przekazującego energię do wytwornicy pary siłowni ORC. Przykład tego typu instalacji badawczej o mocy 15 kWel przedstawiony został na rysunku 5 [141].

Rysunek 5. Siłownia ORC zainstalowana w Katedrze Techniki Cieplnej Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie [141]

Ponadto spalanie biomasy może być źródłem energii odpadowej, która może być z powodzeniem użyta do zasilania siłowni ORC tak jak to opisano w rozdziale 1.2.

1.4.2. Wytwarzanie biogazu

Wytwarzanie biogazu jest bardzo ciekawym i korzystnym sposobem wykorzystania biomasy, która nie może być energetycznie wykorzystana poprzez spalanie.

Podstawowym sposobem stosowanym w większości biogazowni jest zasilanie biogazem silnika wysokoprężnego celem konwersji energii chemicznej paliwa na energię elektryczną. Powstałe wówczas ciepło w postaci strumienia wody chłodzącej silniki może zostać wykorzystane do celów grzewczych lub jako źródło ciepła dla siłowni ORC (tak jak to opisano w podrozdziale 1.2 i pracy [75]).

Możliwe jest także bezpośrednie wykorzystanie strumienia ciepła powstałego ze spalania biogazu do zasilania siłowni ORC, jednak z uwagi na stosunkowo niską sprawność takie rozwiązanie nie jest stosowane i większość biogazowni produkuje energię elektryczną z zastosowaniem silników wysokoprężnych.

1.5. Podsumowanie

Zastosowanie siłowni ORC, w czasie starań o jak najwyższą efektywność energetyczną procesów [10, 12, 15, 22, 28, 29, 32, 96, 101, 116, 128] i wiążącym się z tym ograniczeniem zużycia paliw kopalnych oraz emisji gazów i pyłów, sprawiają, że siłownie

ORC mogą stać się przydatną technologią w dążeniu do osiągniecia tego celu, a w szczególności dlatego, że:

- duża ilość substancji może być wykorzystana jako medium robocze siłowni ORC, co daje wiele możliwości konfiguracji i modyfikacji siłowni,
- istnieje możliwość takiego doboru parametrów pracy siłowni ORC, głównie w zależności od parametrów źródła energii, aby efektywność jej pracy była jak najwyższa,
- istnieje możliwość bardzo korzystnego zagospodarowania źródeł energii niskoi średniotemperaturowych, których wykorzystanie w konwencjonalny sposób mogłoby być trudne i/lub mało efektywne,
- istnieje możliwość współpracy z już istniejącymi systemami energetycznymi, mogącymi służyć jako źródło energii napędowej dla siłowni ORC, co pozwala na zwiększenie ogólnej sprawności danego procesu, bądź wykorzystanie energii odpadowej.

Pomimo wielu zalet, siłownie ORC odznaczają się dosyć niską sprawnością, przez co zastosowanie ich jako całkowicie autonomicznych i samodzielnych układów służących do konwersji energii (za wyjątkiem energetyki geotermalnej) jest mało efektywne, a w efekcie nieopłacalne. Z tego względu wykorzystanie siłowni ORC obecnie ogranicza się do układów podkrytycznych niskotemperaturowych zasilanych energią geotermalną oraz średniotemperaturowych układów ORC zasilanych biomasą. Jednak zdaniem autora duży potencjał w stosowaniu układów ORC istnieje w stosowaniu układów ORC współpracujacychz innymi systemami, jako wspomagające, w celu podwyższenia ogólnej sprawności procesui obniżenia kosztów pracy systemu. Siłownie ORC mogą być wykorzystywane wszędzie tam, gdzie zachodzi możliwość zagospodarowania nadmiarowego ciepła poprocesowego oraz energii odpadowej np. energii unoszonej ze spalinami.

2. PRZEGLĄD LITERATURY DOTYCZĄCEJ ZASTOSOWANIA NADKRYTYCZNEGO OBIEGU CLAUSIUSA - RANKINE'A

Niniejszy przegląd literatury tematu został zawężony do dwufazowych obiegów nadkrytycznych realizowanych z zastosowaniem czynników roboczych innych niż woda. Bibliografa publikacji na temat zastosowania obiegu nadkrytycznego w siłowni ORC jest, w chwili obecnej, dość obszerna. Autorzy artykułów, w głównej mierze, skupiają się na analizie termodynamicznej siłowni ORC pracującej wg obiegu nadkrytycznego, ze szczególnym uwzględnieniem doboru odpowiednich parametrów pracy siłowni i/lub odpowiedniego czynnika roboczego w zależności od parametrów i charakterystyki źródła ciepła. Część prac dotyczy porównania efektywności pracy siłowni w zależności od dobranych parametrów źródła ciepła i/lub czynnika roboczego oraz analizie porównawczej efektywności pracy siłowni pracujących wg obiegu nadkrytycznego i siłowni z obiegiem podkrytycznym. Ponadto w przeglądzie literatury tematu można odwołać się do kilku publikacji skupiających się na innych aspektach pracy siłowni ORC z uwzględnieniem obiegu nadkrytycznego, takich jak: inne metody zwiększania efektywności pracy, wykorzystanie mieszanin zeotropowych, wpływ czynników roboczych na środowisko, i inne.

Ze względu na różnorodny charakter prac oraz różne aspekty, jakimi kierowali się ich autorzy, w niniejszym przeglądzie literatury analiza publikacji została wykonana po przydzieleniu przywoływanych artykułów naukowych i referatów do następujących grup tematycznych:

- analiza źródła ciepła,
- czynnik roboczy,
- efektywność pracy siłowni
- □ inne.

Do wyżej wymienionych grup przyporządkowano konkretne publikacje, przedstawiono krótkie charakterystyki grup tematycznych i omówiono poruszone w niniejszych pracach zagadnienia.

2.1. Analiza termodynamiczna obiegu nadkrytycznego w zależności od charakterystyki źródła ciepła

Charakterystyka źródła ciepła ma istotny wpływ na parametry pracy obiegu ORC. Źródła mogą być podzielone na: otwarte (open) [15] np. strumień wody geotermalnej, gdzie zdeterminowana jest tylko początkowa temperatura źródła ciepła a końcowa jest wielkością wynikową, zależną od parametrów pracy siłowni lub

 - źródła zamknięte (sealed) [15] na przykład strumień oleju termalnego ogrzewanego w kotle opalanym biomasą, w których zarówno temperatura początkowa źródła ciepła jak i końcowa są ściśle określone, natomiast parametry pracy siłowni powinny zostać tak zaprojektowane aby uwzględniać obydwaparametry źródła energii. Tej tematyce poświęcone są prace [15] i [73].

Bardziej powszechny jest jednak podział źródeł energii ze względu na pochodzenie energii przeznaczonej do zagospodarowania w siłowni ORC, dlatego w tym punkcie dokonano przeglądu prac naukowych z podziałem na następujące podgrupy:

- siłownie ORC zasilane energią geotermalną,
- siłownie ORC zasilane energią odpadową,
- siłownie ORC zasilane energią słoneczną,
- siłownie ORC zasilane energią pochodzącą ze spalania biomasy.

2.1.1. Nadkrytyczne siłownie ORC zasilane energią geotermalną

Energia geotermalna jest najczęściej wybieranym przez autorów źródłem energii do zasilania siłowni ORC. Powodów takiego stanu rzeczy może być wiele ogólnodostępność ciepła geotermalnego, brak emisji zanieczyszczeń przy wykorzystaniu energii geotermalnej, czy inne zalety jak na przykład niewielki wpływ warunków atmosferycznych na pracę źródła energii. Powodem może być również to, że jak podali autorzy pracy [42] obieg nadkrytyczny z zastosowaniem regeneracji wewnętrznej jest bardzo efektywną metodą generacji energii elektrycznej z wykorzystaniem energii geotermalnej. Do tej grupy można zaliczyć następujące publikacje [8, 9, 14, 42, 43, 45, 46, 47, 53, 55, 70, 83, 113, 132]. Temperatury wody geotermalnej przyjmowane przez autorów są różne, a ponadto autorzy zazwyczaj nie przyjmują jednej stałej wartości lecz pewien zakres temperatur dla których wykonywane są obliczenia. Najczęściej rozpatrywane w artykułach są źródła geotermalne niskotemperaturowe o temperaturze nie przekraczającej 120°C, co przedstawiono w pracach [8, 9, 14, 45, 46, 47]. W tabeli 1 zestawiono rodzaje czynników roboczych i wartości sprawności siłowni ORC zasilanych energią geotermalnąo różnych parametrach przedstawionych w różnych pracach naukowych.

Praca	Temperatura wody	Obieg podkrytyczny		Obieg nadkrytyczny	
	geotermalnej	Czynniki	Sprawność	Czynniki	Sprawność
	[°C]		[%]		[%]
[113]	130-170	Propan (R290), R134a,	10,11 -	CO ₂ (R744), R41, R218, R143a,	7,97 – 11,27
		R227ea, siarczyn	10,62	R32, R115, propan (R290), R134a,	
		karbonylu, R245fa,		R227ea	
		Izopentan (R601a),			
		woda			
[14]	95-120			R125, R134a, R115, propylen	pomiędzy
					10,5 oraz
					15,0
[43]	130-170			Propan, R125, R134a	10,2 – 12,0
[55]	110-160	R134a, R227ea	10,44 -	R134a, R227ea	7,61 – 14,13
			13,58		
[8]	100	R134a, R245fa	7,83 – 7,86	Mieszanina zeotopowa:	6,82 – 7,26
				(R125/R134a, R124/R227ea,	
				R125/R236ea, R125/R245fa),	
				R125	
[45]	80-120			CO ₂ , R170, R41, R125, R218,	6,45 – 11,55
				R143a, R115, R32, R1270, R290,	
				R22, R134a, R227ea	
[9]	100	R134a, R152a, R245fa	7,67 – 8,52	R125	8,47
[132]	90	R123, R245ca, R245fa,	pomiędzy	R143a, R218, R125, R41, R170,	pomiędzy5,2
		R600a, R236fa, R152a,	9,5 oraz	CO ₂	oraz 8,6
		R227ea, R134a	11,2		
[46]	80-120	R245fa	5,8 – 9,73	CO ₂	4,56 – 8,22

Tabela 1. Zestawienie rodzajów czynników roboczych i uzyskiwanych wartości sprawności w siłowniach geotermalnych (na podstawie przeglądu literatury tematu)

2.1.2. Nadkrytyczne siłownie ORC zasilane energią odpadową

Energia odpadowa jako źródło napędowe do zasilania siłowni ORC jest przedmiotem wielu publikacji. Zasilanie siłowni ORC z tego rodzaju źródła ma bardzo duży potencjał ekonomiczny i istotny wpływ na wskaźniki ekologiczne, gdyż dzięki zagospodarowaniu energii odpadowej można podwyższać ogólną sprawność procesów a nośnikiem energii odpadowej mogą być zarówno spaliny i gazy wylotowe jak również woda chłodząca skraplacze, silniki wewnętrznego spalania czy czynnik opuszczający turbinę obiegu pierwotnego. Do tej grupy można zaliczyć następujące publikacje: [22, 37, 52, 55, 111, 118, 126]. Parametry rozpatrywanych źródeł energii są zróżnicowane i na przykład w pracy [37] zastosowano gorące powietrze o temperaturze 320°C a w pracy [126] spaliny o temperaturze zaledwie 150°C. W pracy [10] przedstawiono podział źródeł energii odpadowej ze względu na temperaturę zakładający trzy kategorie źródła ciepła odpadowego. Pierwsza kategoria to źródła niskotemperaturowe o temperaturze nie przekraczającej 230°C. Ostatnią kategorę według tego podziału stanowią źródła o temperaturze wyższej niż 650°C nazwane źródłami wysokotemperaturowymi.

2.1.3. Nadkrytyczne siłownie ORC zasilane energią słoneczną

Energia słoneczna, ze względu na okresowość dobową i natężenie promieniowania zależne od pory roku oraz położenia geograficznego, oraz duży wpływ warunków atmosferycznych jest jednym z "trudniejszych" źródeł energii wykorzystanych do produkcji energii elektrycznej. Jednakże elektrownie słoneczne we współpracy z siłowniami parowymi są już stosowane w kilku lokalizacjach na świecie [138, 139, 140, 144]. Jeśli chodzi o zastosowanie obiegu nadkrytycznego w siłowni ORC zasilanej energią słoneczną to warto zacytować dwie prace teoretyczne [134] i [133], w których poruszono tę problematykę. Do szczególnie ciekawych wniosków doszli autorzy pracy [134]. W cytowanej pracy, stwierdzają oni, że zastosowanie nadkrytycznego obiegu ORC zasilanego energią słoneczną daje wyższą sprawność konwersji niż w przypadku zastosowania konwersji bezpośredniej z zastosowaniem paneli fotowoltaicznych.

2.1.4. Nadkrytyczne siłownie ORC zasilane energią pochodzącą ze spalania biomasy

Spalanie biomasy jest najpowszechniejszym z odnawialnych źródeł ciepła do produkcji energii elektrycznej z wykorzystaniem siłowni ORC [55]. Generuje przy tym najniższe koszty inwestycyjne. Może być zastosowane wszędzie tam gdzie biomasa jest tania i łatwo dostępna, np. w tartaku (przykład zastosowania podano w pracy [12]). Niewiele jest jednak publikacji szerzej poświęconych wykorzystaniu biomasy do zasilania siłowni ORC z obiegiem nadkrytycznym. Jedynie praca [55] zawiera pewne informacje na ten temat jednak nie jest to wyczerpujące opracowanie.

2.2. Analiza termodynamiczna obiegu nadkrytycznego w zależności od rodzaju czynnika roboczego

Dobór właściwego czynnika roboczego jest bardzo istotny, podkreśla to wielu autorów analizowanych publikacji. W przypadku obiegu nadkrytycznego ważne jest aby temperatura krytyczna czynnika była stosunkowo niska i niższa od temperatury źródła ciepła, co podkreślają autorzy prac [21, 42, 101]. Autorzy często podkreślają także, że istotne jest aby czynnik roboczy miał niewielki wpływ na środowisko i podają w swoich pracach wartości współczynników będących miarą wpływu czynników na środowisko naturalne, jak ODP, czy GWP. Jako przykład może posłużyć tabela 2, która jest częścią tabeli podanej w pracy [132].

Czyppik	W	Podzaj czypnika		
Czynnik	ALT	ODP	GWP	KUUZAJ CZYIIIIKA
R123	1,3	0,02	77	izentropowy
R245ca	62	0	693	suchy
R245fa	7,6	0	1030	izentropowy
R600	0,02	0	~20	suchy
R236ea	8	0	710	suchy
R600a	0,02	0	~20	suchy
R236fa	240	0	9810	suchy
R152a	1,4	0	124	mokry
R227ea	42	0	3220	suchy
R134a	14	0	1430	izentropowy
R143a	52	0	4470	mokry
R218	2600	0	8830	izentropowy
R125	29	0	3500	mokry
R41	2,4	0	92	mokry
R170	0,21	0	~20	mokry
CO ₂	>50	0	1	mokry

Tabela 2. Parametry określające wpływ danego czynnika roboczego na środowisko naturalne, podane przez autorów pracy [132]

2.2.1. Powierzchnia wymiany ciepła

Kolejnym ważnym aspektem przy wyborze czynnika roboczego, który jest podkreślany przez autorów prac [17, 47, 54, 72, 132] jest powierzchnia wymiany ciepła w poszczególnych wymiennikach ciepła siłowni, która jest różna w zależności od rodzaju czynnika i im jest większa tym wyższe są koszty inwestycyjne. W przypadku obiegu nadkrytycznego wymagana powierzchnia wymiany ciepła często jest większa niż w przypadku obiegu podkrytycznego, co można zauważyć analizując tabelę 3 [132], w której podano wartości powierzchni wymiany ciepła w zależności od czynnika roboczego i rodzaju obiegu.

Tabela 3. Powierzchnia wymiany ciepła przy zastosowaniu różnych czynników roboczych w obiegu podkrytycznym oraz nadkrytycznym [132]

czynnik	Temperatura pary na wlocie do turbiny [°C]	Powierzchnia wymiany ciepła [m ²]
R123 (podkrytyczny)	74	12,2
R245ca (podkrytyczny)	74	11,1
R245fa (podkrytyczny)	76	9,2
R600 (podkrytyczny)	72	10,5
R236ea (podkrytyczny)	76	10,1
R600a (podkrytyczny)	76	9,6
R236fa (podkrytyczny)	76	10,4
R152a (podkrytyczny)	74	8,7
R227ea (podkrytyczny)	78	9,0
R134a (podkrytyczny)	74	9,6
R143a (nadkrytyczny)	84	13,7
R218 (nadkrytyczny)	84	21,2
R125 (nadkrytyczny)	84	20,8
R41 (nadkrytyczny)	79	25,0
R170 (nadkrytyczny)	77	23,2
CO2 (nadkrytyczny)	84	7,7

2.2.2. Praca pompy obiegowej

Według autorów pracy [70] ważnym, aczkolwiek często zaniedbywanym, parametrem pracy siłowni oraz w dużym stopniu zależnym od rodzaju czynnika roboczego jest praca pompy obiegowej. Moc pompy stanowi istotny udział potrzeb własnych siłowni i powinna być uwzględniana przy obliczaniu mocy obiegu. Autorzy pracy [14] zauważają, że natężenie przepływu czynnika w przypadku obiegu nadkrytycznego jest wyższe, co może skutkować wzrostem mocy pompowania. Z kolei Autorzy pracy [42] twierdzą, że praca przetłaczania jest niższa w przypadku czynników o niższym ciśnieniu krytycznym.

2.2.3. Inne aspekty pracy siłowni ORC z obiegiem nadkrytycznym

W pracach [21] oraz [46] został poruszony między innymi problem wartości ciśnienia górnego w obiegu nadkrytycznym, które w zależności od rodzaju czynnika powinno być brane pod uwagę ze względu na problemy natury technicznej i wytrzymałości materiałów konstrukcyjnych. Ponadto autorzy pracy [37] podają, że stosowanie czynników o wyższej temperaturze krytycznej we współpracy ze źródłami ciepła o odpowiednio wysokich parametrach, pozwoli uzyskać wyższą temperaturę pary na wlocie do turbiny i umożliwi zastosowanie turbin o mniejszych rozmiarach, co nie jest bez znaczenia w aspekcie kosztów inwestycyjnych.

2.2.4. CO₂ jako czynnik roboczy

Autorzy pracy [45] stwierdzają, że czynnikiem najpowszechniej wykorzystywanym w obiegach nadkrytycznych jest ditlenek węgla (CO₂). Potwierdza to ilość publikacji w których jest on uwzględniany jako płyn roboczy: [7, 20, 22, 45, 46, 52, 56, 111, 132, 133, 134] a często wyniki obliczeń uzyskane dla CO₂ stanowią punkt odniesienia dla porównania wyników uzyskanych przy rozpatrywaniu innych czynników jak w przypadku prac [7, 22, 45, 56, 132]. Wyniki uzyskane przez autorów pracy [45] pokazują, że dobór odpowiedniego czynnika roboczego ma duży wpływ na uzyskiwane parametry pracy siłowni ORC, a wyniki uzyskiwane dla siłowni z CO₂ jako czynnik roboczy nie są najwyższe, mimo, że CO₂ jest według autorów pracy [45] najpowszechniej rozpatrywanym czynnikiem w obiegu nadkrytycznym. W tabeli 4 podano wyniki uzyskane w pracy [45], które pokazują, że zastosowanie czynników innych niż CO₂ w obiegu nadkrytycznym pozwala zwiększyć moc siłowni ORC. Praca [134], w której przestawiono wyniki efektywności pracy siłowni nadkrytycznej z CO₂ jako płynem roboczym, jest jedyną pracą, w której zawarto wyniki pomiarów eksperymentalnych.

Tabela 4. Wybrane wyniki obliczeń uzyskane przez autorów pracy [45]						
Czynnik roboczy	Temperatura źródła ciepła (woda geotermalna)	Natężenie przepływu czynnika roboczego	Sprawność cieplna (+: regeneracja wew. –: bez regeneracji wew.)	Moc obiegu	Moc pompy w odniesieniu do mocy turbiny	
	°C	kg/s	%	kW	%	
CO ₂	100	0,125	6,45(+)	1,38	2,32	
R170	100	0,08	6,99(+)	1,38	2,22	
R41	100	0,085	6,99(+)	1,59	2,44	
R125	100	0,153	8,64(+)	1,6	2,38	
R218	100	0,281	7,48(+)	1,73	2,36	
R143a	100	0,098	8,88(+)	1,49	2,42	
R115	100	0,141	9,37(+)	1,37	2,34	
R32	120	0,087	10,2(-)	2,56	2,1	
R1270	120	0,058	10,87(-)	2,19	1,88	
R290	120	0,049	11,55(+)	2,08	1,86	
R134a	120	0,085	11,51(-)	1,89	1,96	
R227ea	120	0,235	9,96(-)	2,75	2,06	

2.2.5. Mieszaniny zeotropowe jako czynnikirobocze

Na uwagę zasługują również prace [8] i [19], w których autorzy podjęli próbę analizy wykorzystania mieszaniny zeotropowej w obiegu nadkrytycznym. Jednym z wniosków, które zostały sformułowane w publikacji [19] jest stwierdzenie, że zastosowanie mieszaniny azeotropowej w obiegu nadkrytycznym może przyczynić się do poprawy efektywności pracy siłowni w stosunku do siłowni z obiegiem podkrytycznym i substancją jednoskładnikową jako czynnikiem roboczym. Podobne wyniki zawarte zostały pracy [8], co można zauważyć analizując tabelę 5, która została opracowana na podstawie publikacji [8]

Temperatura Strumień Stosunek składu na wlocie do czynnika Moc Мос Moc robocz<u>ego</u> pompy turbiny sprawność Czynnik roboczy Rodzaj obiegu mieszaniny turbiny obiegu Stosunek molowy °C kg/s W W W % 91,35 0,0185 307,62 29,74 337,35 0,0783 R134a podkrytyczny 1 R125/ 0,0325 340,29 62,05 432,34 0,0726 R134a nadkrytyczny 0,799/0,201 94,23 R125/ 94,97 0,0357 339,31 95,01 434,32 R227ea nadkrytyczny 0,803/0,197 0,0705 R125/ 0,0363 342,39 R236ea nadkrytyczny 0,940/0,060 92,98 105,7 448,08 0,0702 R125/ 0,939/0,061 0,0349 342,96 101,18 444,14 0,0712 R245fa nadkrytyczny 93,65 R125 nadkrytyczny 1 94,09 0,0382 336,46 116,62 453,09 0,0682 R245fa podkrytyczny 1 87,4 0,0135 249,91 7,55 257,46 0,0786

Tabela 5. Wybrane wyniki obliczeń zaprezentowanych przez autorów pracy [8]

2.3. Analiza termodynamiczna obiegu nadkrytycznego pod kątem efektywności pracy siłowni

Porównywanie uzyskanych wskaźników efektywności pracy siłowni ORC nie jest proste z uwagi na różnorodność wskaźników, jakie mogą zostać uznane za kryterium porównania w analizie porównawczej. Różni autorzy przyjmują różne założenia w obliczeniach, analizują różne warianty konfiguracji siłowni, przyjmują różne parametry źródła ciepła oraz różne czynniki robocze. Mimo to większość z nich dochodzi do wniosku, że zastosowanie obiegu nadkrytycznego może przyczynić się do poprawy efektywności pracy siłowni ORC.

Autorzy pracy [55] wykonali analizę siłowni zasilanej energią odpadową pochodzącą z systemu chłodzenia silników spalinowych. Wybranym przez autorów pracy czynnikiem roboczym był płyn R245fa a obliczenia zostały wykonane dla siłowni z obiegiem nad- jak i podkrytycznym. Uzyskane wyniki, które zacytowano w tabeli 6 pokazują, że zastosowanie obiegu nadkrytycznego może przyczynić się do poprawy sprawności siłowni.

rabela o. wyniki obliczen sprawności słowni uzyskane przez autorow pracy [55]						
	Obieg	Obieg	Relatywny wzrosts			
	podkrytyczny	nadkrytyczny	prawności			
Sprawność cieplna siłowni	14,62%	15,97%	9,20%			
Sprawnoś ćcieplna całego systemu	11,27%	12,72%	12,80%			

Tabela 6. Wyniki obliczeń sprawności siłowni uzyskane przez autorów pracy [55]

Z kolei autorzy pracy [113] przeanalizowali efektywność pracy siłowni ORC zasilanej niskotemperaturowym źródłem energii, pracującej z 13 różnymi czynnikami roboczymi (w tym także z wodą) w obiegu nad- i podkrytycznym, następnie wyniki obliczeń porównano ze sobą. Jako punkt odniesienia w tej pracy przyjęto wyniki uzyskane dla izopentanu. Wyniki uzyskane przez autorów podano w tabeli 7.

Tabela 7. Wyniki obliczeń uzyskane przez autorów pracy [113] (wartości oznaczone gwiazdką (*) dotyczą obiegu nadkrytycznego)

	Temperatura	Moc właściwa	Temperatura pary na wlocie		Wzrost mocy wzgledem
Czynnikroboczy	źródła ciepła	netto	do turbiny	Ciśnienie górne	izopentanu
	[°C]	[kWs/kg]	[°C]	[MPa]	[%]
	130	16,56*	110	14	-4,82
	150	25,6*	130	15,6	-9,31
R744 (CO ₂)	170	36,34*	150	18	-13,18
	130	22,65*	110	10	30,15
	150	34,54*	130	12	22,36
R41	170	48,29*	150	14	15,37
	130	24,21*	100	4,2	39,1
	150	34,73*	122	5,8	23,01
R218	170	45,56*	142	7,4	8,84
	130	21,41*	110	5,8	23,01
	150	36*	130	7,4	27,51
R32	170	52,99*	150	9	26,6
	130	24,58*	96	4	41,25
	150	37,52*	118	5,6	32,92
R115	170	51,07*	140	7,2	22,03

	130	19,58	82	3,2	12,54
	150	36,79*	104	4,6	30,3
R290 (propan)	170	53,14*	130	6,4	26,97
	130	20,33	78	2,5	16,83
	150	37,48*	107	4,4	32,75
R134a	170	54,73*	133	6,6	30,77
	130	20,55	80	1,8	18,11
	150	39,84*	114	3,6	41,11
R227ea	170	54,75*	138	5,6	30,82
	130	16,64	74	0,7	-4,38
	150	29,25	86	0,9	3,6
R245fa	170	41,8	97	1,2	-0,14
	130	17,4	75	0,4	
	150	28,23	84	0,5	
R601a (izopentan)	170	41,85	92	0,6	
Woda	150	21,59	130	0,05	-23,52

Analizując wartości parametrów zestawionych w tabeli 7 można zauważyć, że wyniki mocy netto dla obiegu nadkrytycznego są wyższe niż te uzyskane w przypadku zastosowania obiegu podkrytycznego.

Porównanie mocy siłowni z obiegiem nad- i podkrytycznym przeprowadzili także autorzy pracy [132]. W pracy tej wybrano 6 czynników dla obiegu nadkrytycznego oraz 10 czynników dla obiegu podkrytycznego. Wyniki obliczeń zestawiono w tabeli 8.

Czynnik roboczy	Temperatura na wlocie do turbiny[°C]	Moc netto [kW]
R123 (podkrytyczny)	74	5,4
R245ca (podkrytyczny)	74	5,2
R245fa (podkrytyczny)	76	4,3
R600 (podkrytyczny)	72	5,8
R236ea (podkrytyczny)	76	4,6
R600a (podkrytyczny)	76	5,1
R236fa (podkrytyczny)	76	4,7
R152a (podkrytyczny)	74	5,2
R227ea (podkrytyczny)	78	3,9
R134a (podkrytyczny)	74	5,4
R143a (nadkrytyczny)	84	6,7
R218 (nadkrytyczny)	84	6,9
R125 (nadkrytyczny)	84	7,9
R41 (nadkrytyczny)	79	9,3
R170 (nadkrytyczny)	77	7,2
CO2 (nadkrytyczny)	84	2,6

Tabela 8. Wyniki uzyskane przez autorów pracy [132]

Na podstawie analizy wartości zestawionych w tabeli 8, można zauważyć, że moc siłowni przy zastosowaniu obiegu nadkrytycznego (poza CO₂) jest wyższa w stosunku do obiegu podkrytycznego.

W pracy [9] autorzy porównali parametry pracy siłowni pracującej według obiegu nadkrytycznego z czynnikiem R125 z parametrami uzyskanymi w siłowni podkrytycznej z trzema różnymi czynnikami roboczymi (R134a, R152a oraz R245fa). Parametry pracy siłowni oraz efektywność jej pracy zestawiono w tabeli 9.

Tabela 9. wyniki obliczen uzyskane przez autorow pracy [9]							
Czynnik roboczy		R125	R134a	R152a	R245fa		
Rodzaj obiegu		nadkrytyczny	podkrytyczny	podkrytyczny	podkrytyczny		
Temperatura							
krytyczna czynnika	°C	66,02	101,06	113,26	154,01		
Temperatura pary na wlocie							
do turbiny	°C	91,82	88,86	95,96	68,91		
Natężenie przepływu czynnika							
roboczego	kg/s	1,496	0,82	0,51	0,789		
Ciśnienie krytyczne czynnika	MPa	3,618	4,059	4,517	3,651		
Strumień ciepła w wytwornicy							
pary	kW	203,19	177,77	172,91	172,48		
Strumieńciepła w skraplaczu	kW	187,61	162,95	158,18	157,87		
Moc netto	kW	15,58	14,83	14,74	14,61		
Moc pompy	kW	4,39	1,17	0,81	0,32		
sprawność		7,97	8,34	8,52	8,47		

abela 9. Wyniki obliczeń uzyskane przez autorów pracy [9]

Wyniki zamieszczone w tej pracy wskazują na to, że zastosowanie obiegu nadkrytycznego nie zawsze wiąże się ze wzrostem zarówno mocy jak i sprawności siłowni. Na przykładzie czynnika R125 widać, że zastosowanie obiegu nadkrytycznego może prowadzić do wzrostu mocy przy jednoczesnym spadku sprawności siłowni.

Podobnie przedstawiają się wyniki uzyskane w pracy [43], które zestawiono w tabeli 10.

wielkość	propan	R125	R134a
Temperatura skraplania [K]	320	319	328,4
Ciśnienie dolne [MPa]	1,6	2,1	1,5
Ciśnienie górne [MPa]	6,4	8,4	6
Natężenie przepływu czynnika roboczego [kg/s]	365	1050	850
Temperatura pary na wlocie do turbiny [K]	443,6	407,8	414,8
Moc elektryczna [MW]	29,04	28,73	27,27
Moc pompy [MW]	5,69	8,2	4,83
Moc netto obiegów nadkrytycznych [MW]	23,3	20,5	22,4

Tabela 10. Wyniki podane w pracy [43]

Autorzy publikacji [43] porównali parametry pracy siłowni nadkrytycznej z wykorzystaniem 3 czynników roboczych: propanu, R125 oraz R134a. Wyniki jakie uzyskali pokazują, że najniższą efektywność pracy uzyskuje się stosując czynnik R125.

Ponadto ciekawy wniosek wysnuli autorzy pracy [85], którzy stwierdzili, że w pewnych wariantach siłowni, w których czynnik jest odparowywany w warunkach blisko krytycznych, osiągane moce mogą być wyższe, niż w przypadku zastosowania obiegu nadkrytycznego. Podobne wnioski jednak dotyczące obiegu podkrytycznego zamieszczono w pracy [82]. Autorzy pracy [82] podkreślają zalety stosowania odparowywania czynnika w warunkach blisko podkrytycznych i wpływ paramentów pracy parowacza na efektywność pracy siłowni ORC.

2.4. Wnioski z przeglądu literatury

Na podstawie analizy wyników badań przedstawionych w dostępnych pozycjach literatury dotyczących zastosowania obiegu nadkrytycznego w siłowni ORC można sformułować następujące podsumowanie rozdziału drugiego:

- kluczowym aspektem związanym z pracą siłowni parowej, zarówno nadkrytycznej jak i podkrytycznej jest wybór właściwego czynnika roboczego. W przypadku siłowni nadkrytycznej wybór płynu roboczegopowinien być podyktowany doboremtego płynu do temperatury źródła energii, ze szczególnym uwzględnieniem jego temperatury krytycznej;
- zastosowanie obiegu nadkrytycznego może spowodować wzrost mocy oraz sprawności siłowni, ale jest to uzależnione od wielu parametrów takich jak np. temperatura źródła energii, rodzaj czynnika roboczego. Zastosowanie siłowni ORC na parametry nadkrytyczne zazwyczaj wiąże się ze wzrostem efektywności pracy (mocy i/lub sprawności) jednak w literaturze tematu znane są przykłady, gdy zastosowanie obiegu nadkrytycznego spowodowało spadek efektywności pracy siłowni;
- zastosowanie obiegu nadkrytycznego zazwyczaj powoduje wzrost potrzeb własnych wynikających z większej mocy pompowania. Obiegi nadkrytyczne charakteryzują się większą różnicą ciśnień roboczych w obiegu (konieczność przekroczenia ciśnienia krytycznego);
- zastosowanie obiegu nadkrytycznego może spowodować wzrost natężenia przepływu czynnika roboczego, co także może prowadzić do wzrostu mocy pompy obiegowej;
- dla niektórych czynników obiegowych pracujących w warunkach nadkrytycznych zauważalne jest dość wysokie ciśnienie robocze, co może prowadzić do problemów konstrukcyjnych związanych z ograniczoną wytrzymałością materiałów.

3. OBIEGI PORÓWNAWCZE NISKOTEMPERATUROWYCH SIŁOWNI PAROWYCH

Obiegi porównawcze siłowni parowych, w zależności od tego przy jakich parametrach czynnika roboczego zachodzą poszczególne przemiany termodynamiczne, można podzielić na dwie zasadnicze grupy:

- obiegi podkrytyczne,
- obiegi nadkrytyczne.

Używając pojęcia <u>obiegi podkrytyczne</u>, autor pracy ma na myśli obieg porównawczy siłowni parowej Clausiusa-Rankine'a, realizowany w różny sposób, zależny od rodzaju czynnika i jego parametrów. Obieg ten zawsze składa się z dwóch przemian izobarycznych (doprowadzanie i odprowadzanie ciepła) oraz dwóch przemian izentropowych (sprężanie i rozprężanie czynnika roboczego), i wszystkie przemiany obiegu przebiegają pod krzywą nasycenia czynnika roboczego a temperatura i ciśnienie w żadnym punkcie obiegu nie przekraczają parametrów krytycznych (rys. 6a i 6b). Wyjątek stanowi obieg z zastosowaniem przegrzewania pary (konieczny w przypadku stosowania czynników mokrych), gdzie występuje dodatkowo przemiana izobarycznego przegrzewania pary przedstawiona na rysunku 6c jako krzywa 6-1. Przemiana 6-1 w całości przebiega w obszarze pary przegrzanej i część tej przemiany może być realizowana przy temperaturze wyższej od temperatury krytycznej.

Rysunek 6. Cykl przemian termodynamicznych a) obiegu Clausiusa-Rankinea w przypadku zastosowania czynnika suchego (na parę nasyconą suchą), b) obiegu Clausiusa-Rankinea na parę mokrą, c) obiegu Clausiusa-Rankinea z zastosowaniem przegrzewania pary (w przypadku zastosowania czynnika mokrego)

Obieg podkrytyczny może występować także w wersji z zastosowaniem regeneracyjnego podgrzewania cieczy roboczej (podgrzewanie regeneracyjne lub regeneracja wewnętrzna) [63, 116, 121] a także może być realizowany z zastosowaniem mieszaniny zeotropowej jako cieczy roboczej [1, 23, 49, 65, 98, 122], co powoduje, że przemiany fazowe: skraplanie i odparowanie nie są przemianami izotermicznymi (występuje tzw. zjawisko poślizgu temperaturowego).

<u>Obiegi nadkrytyczne</u> charakteryzują się tym, że wszystkie lub część przemian obiegu realizowane jest w tzw. obszarze nadkrytycznym, to znaczy przy parametrach czynnika roboczego wyższych od wartości krytycznych. Obiegi te w zależności od tego,

które przemiany realizowane są w obszarze nadkrytycznym można podzielić na kolejne dwie podgrupy:

- obiegi nadkrytyczne jednofazowe,
- obiegi nadkrytyczne dwufazowe.

Podstawowy schemat siłowni, który pokazano na rysunku 7, w przypadku obiegu podkrytycznego jak i nadkrytycznego przedstawia się podobnie, gdyż zarówno obiegi podkrytyczne jak i nadkrytyczne składają się z tych samych przemian termodynamicznych to znaczy z dwóch przemian izobarycznych i dwóch przemian izentropowych a do ich realizacji używane są urządzenia o takim samym przeznaczeniu (ale często o różnej konstrukcji).

Rysunek 7. Podstawowy schemat siłowni ORC z nadkrytycznym obiegiem Clausiusa-Rankine'a

Zasadnicza różnica pomiędzy siłownią parową z obiegiem nadkrytycznym w stosunku do siłowni z obiegiem podkrytycznym wynika ze sposobu w jaki realizowany jest proces doprowadzania ciepła do obiegu. Doprowadzanie ciepła realizowane jest w nadkrytycznej wytwornicy pary - czynnik roboczy w tej przemianie ma ciśnienie nadkrytyczne i tym samym nie można wydzielić w nim procesu podgrzewania i odparowania.

Różnice między obiegiem podkrytycznym i nadkrytycznym, oraz pomiędzy różnego rodzaju obiegami nadkrytycznymi, wykazać można dokładniej analizując linie obrazujące przebieg przemian charakterystycznych poszczególnych obiegów, na przykład za pomocą wykresu w układzie T-s, co zostało pokazane poniżej w podpunkcie 3.1.

3.1. Obszar nadkrytyczny

Na wykresie w układzie współrzędnych T-s (rys.8) został zaznaczony obszar nadkrytyczny, w którym realizowanych jest część przemian termodynamicznych obiegów nadkrytycznych dwufazowych oraz wszystkie przemiany obiegu nadkrytycznego jednofazowego.

Rysunek 8. Obszar nadkrytyczny

Obszar nadkrytyczny znajduje się nad krzywymi nasycenia i jest ograniczony od dołu izobarą oznaczającą ciśnienie krytyczne danego czynnika roboczego (P_{kr}) oraz od góry izobarą ciśnienia maksymalnego (P_{max}), jakie możliwe jest do osiągnięcia przez dany czynnik roboczy. Teoretycznie obieg nadkrytyczny może być realizowany w całym zakresie ciśnień obszaru nadkrytycznego, co czasami pozwala na zwiększanie efektywności pracy siłowni poprzez zwiększanie parametrów pary na wlocie do turbiny, jednak pamiętać należy, iż wartość maksymalnego ciśnienia możliwego do uzyskania w układzie siłowni parowej ograniczony jest przez właściwości konstrukcyjne i wytrzymałościowe materiałów, z których wykonano elementy siłowni.

3.2. Obiegi nadkrytyczne jednofazowe

Pierwsza grupa obiegów nadkrytycznych tj. obiegi nadkrytyczne jednofazowe charakteryzują się tym, iż wszystkie przemiany obiegu realizowane są w obszarze nadkrytycznym. Przykładem obiegu nadkrytycznego jednofazowego może być obieg Fehera [6], którego kształt został przedstawiony na rysunku 9 lub obieg Braytona(Joule'a).

Rysunek 9.Obieg Fehera[6]

Obieg Fehera może znaleźć zastosowanie w siłowniach z czynnikami o niskiej temperaturze krytycznej oraz wysokiej temperaturze maksymalnej, jak na przykład etan, czy CO₂, których temperatury krytyczne oscylują na poziomie nieco powyżej 30°C, a więcna poziomie typowej temperatury, przy której prowadzone jest skraplanie w przypadku obiegu podkrytycznego.

3.3. Obiegi nadkrytyczne dwufazowe

Obiegi nadkrytyczne dwufazowe charakteryzują się tym, iż doprowadzanie ciepła do obiegu odbywa się w obszarze nadkrytycznym, tj. przy ciśnieniu nadkrytycznym, a odprowadzanie ciepła odbywa się w skraplaczu przy ciśnieniu podkrytycznym (występuje przemiana fazowa).

Przykładem dwufazowego obiegu nadkrytycznego może być obieg Gochsztejna [6], którego przebieg przemian termodynamicznych przedstawiono na rysunku 10. Obieg ten charakteryzuje się tym, że sprężanie (przemiana 1-2) oraz rozprężanie (przemiana 3-4) odbywa się nie izentropowo, temperatura pary na wlocie do turbiny jest dużo wyższa od temperatury krytycznej czynnika a skraplanie zachodzi przy temperaturze blisko podkrytycznej.

Rysunek 10. Obieg Gochsztejna [6]

Ponadto zauważyć należy, że w obiegu Gochsztejna istnieje możliwość zastosowania wewnętrznej regeneracji ciepła [6], co zostało przedstawione na wykresie w postaci przemiany 2-7 jako izobaryczne podgrzewanie cieczy czynnika w wymienniku regeneracyjnym oraz przemiany 4-6 jako izobaryczne ochładzanie pary czynnika. Pozostałe przemiany obiegu Gochsztejna to:

- przemiana 7-3 izobaryczne doprowadzanie ciepła ze źródła ciepła,
- przemiana 6-5 izobaryczne chłodzenie czynnika roboczego w chłodnicy do temperatury skraplania,
- przemiana 5-1 izotermiczne skraplanie.

Innym przykładem dwufazowego obiegu nadkrytycznego jest nadkrytyczny obieg Clausiusa-Rankine'a, którego opis i zbadanie możliwości jego zastosowania w nisko i średniotemperaturowych siłowniach parowych z użyciem czynników niskowrzących jest tematem tej pracy.

3.4. Nadkrytyczny obieg Clausiusa- Rankine'a

Nadkrytyczny obieg porównawczy Clausiusa-Rankine'a, analogicznie jak obieg podkrytyczny, składa się z czterech przemian termodynamicznych (rys. 11). Na rysunku 11 przedstawiono cykle przemian termodynamicznych tego obiegu, przy czym na rysunku 6a z zastosowaniem czynnika tak zwanego mokrego, natomiast na rysunku 6b dla czynnika suchego [21, 65, 72, 76,118, 126]. Przynależność do grupy (czynnik mokry lub suchy) ma

dość istotne znaczenie w przypadku siłowni podkrytycznych, gdyż wpływa na ilość sekcji wytwornicy pary (czynniki mokre wymagają przegrzewania), natomiast w przypadku obiegu nadkrytycznego rodzaj czynnika nie ma aż takiego znaczenia.

Rysunek 11.Cykl przemian termodynamicznych nadkrytycznego obiegu Clausiusa-Rankine'a z zastosowaniem a) czynnika mokrego, b) czynnika suchego

Zgodnie z tym co przedstawiono na rysunku 11 obieg nadkrytyczny składa się z następujących przemian charakterystycznych:

przemiana n1-n2s –	izentropowe rozprężanie pary przegrzanej czynnika
	roboczego,

- przemiana n2-n3 izobaryczno-izotermiczne skraplanie czynnika roboczego,
- przemiana n3-n4s izentropowe przetłaczanie czynnika roboczego do ciśnienia nadkrytycznego,
- przemiana n4s-n1 izobaryczne doprowadzanie ciepła.

W przypadku zastosowania czynnika suchego, dodatkowo występuje przemiana (n2s-n2) izobarycznego ochładzania pary za turbiną, która może być zrealizowana w skraplaczu.

Pierwszą cechą charakterystyczną obiegu nadkrytycznego, różniącą go od obiegu podkrytycznego jest przemiana n3-n4s, a więc izentropowe przetłaczanie czynnika, które w obiegu nadkrytycznym przebiega do ciśnienia nadkrytycznego, przez co zwiększają się potrzeby własne siłowni.

Kolejną różnicą w stosunku do obiegu podkrytycznego jest przemiana n4s-n1 (izobaryczne doprowadzanie strumienia ciepła), które w nadkrytycznym obiegu Clausiusa-Rankine'a przebiega w całości w obszarze nadkrytycznym. Ponadto, doprowadzanie strumienia ciepła realizowane jest w całości przez jedną sekcję wymiany ciepła, a nie dwie lub trzy (podgrzewanie, odparowanie i czasami przegrzewanie) jak to ma miejsce w obiegu

podkrytycznym. Dzięki temu uproszczeniu nie ma potrzeby rozróżniania metodyki obliczeń w zależności od rodzaju czynnika roboczego, ponieważ niezależnie od tego czy brany pod uwagę jest czynnik suchy czy mokry metodyka obliczeń jest jednakowa.

Kolejną cechą charakteryzującą nadkrytyczny obieg Clausiusa-Rankine'a jest możliwość doboru ciśnienia pary wlotowej do turbiny. Dla jednej zadanej temperatury pary na wlocie do turbiny można rozpatrywać różne wartości ciśnienia górnego, które zmienia się w zależności od wartości entropii właściwej przy której zachodzi rozprężanie, co zobrazowano na rysunku 12.

s [kJ/kgK]

Rysunek 12.Zakres zmian górnego ciśnienia roboczego przy stałej temperaturze pary na wlocie do turbiny w nadkrytycznym obiegu Clausiusa -Rankine'a

Analizując rysunek 12 można zauważyć, że przy stałej temperaturze pary na wlocie do turbiny wartość ciśnienia górnego, waha się od wartości minimalnej, tj. minimalnie wyższej od ciśnienia krytycznego (punkt n1" na rys. 12) (wartość entropii właściwej dla procesu rozprężania w turbinie n1 – n2s" jest maksymalna), do wartości granicznej ciśnienia pary świeżej (punkt n1 na rys. 12), tj. dla takiego ciśnienia, przy którym rozprężanie będzie przebiegało w obszarze pary przegrzanej i nasyconej suchej (wartość entropii właściwej dla tak realizowanej przemiany n1-n2s jest minimalna). Upraszczając można powiedzieć, że przy zadanej stałej wartości temperatury pary na wlocie do turbiny, ciśnienie górne maleje wraz ze wzrostem entropii właściwej przy której zachodzi rozprężanie. Dzięki tej własności obiegu nadkrytycznego, gdy rozprężanie zachodzi przy odpowiedniej wartości entropii właściwej (gdy rozprężanie zachodzi w pewnej odległości od krzywej nasycenia x=1) możliwe jest zastosowanie regeneracyjnego podgrzewania cieczy roboczej (regeneracja wewnętrzna) również przy użyciu czynnika mokrego.

Zastosowanie nadkrytycznego obiegu Clausiusa-Rankine'a ma też pewne ograniczenia związane z zależnością między temperaturą źródła ciepła a temperaturą i ciśnieniem krytycznym czynnika roboczego. W przypadku gdy temperatura źródła ciepła jest niewiele wyższa od temperatury krytycznej czynnika roboczego i/lub gdy ciśnienie krytyczne czynnika jest stosunkowo wysokie może okazać się, że realizacja obiegu nie jest możliwa z uwagi na niemożliwość osiągnięcia ciśnienia nadkrytycznego przez czynnik roboczy.

4. ŹRÓDŁO CIEPŁA

Istotną cechą siłowni ORC jest możliwość doboru czynnika roboczego, a przez to jego właściwości termodynamicznych, co z kolei wpływa, w mniejszym lub większym stopniu na kształt i rodzaj obiegu termodynamicznego (z regeneracją wewnętrzną lub bez, z przegrzewaniem pary lub bez). Właściwości termodynamiczne czynnika roboczego oddziaływują także na możliwość dostosowania parametrów pracy obiegu do źródła energii zasilającej ten obieg.

Źródłem energii jest zazwyczaj zespół urządzeń, które wykorzystując różne zjawiska fizyczne pozyskują energię i przekształcają ją na użyteczną postać. Następnie za pośrednictwem odpowiedniej substancji pośredniczącej będącej nośnikiem energii przekazują tę energię w postaci ciepła doprowadzanego do obiegu siłowni parowej.

Klasyfikacji źródeł ciepła można dokonać wg różnych kryteriów. Jeżeli kryterium podziału jest pochodzenie energii, które owe źródło wykorzystuje, można wyróżnić następujące rodzaje źródeł ciepła:

- źródła konwencjonalne zazwyczaj wykorzystujące kocioł na paliwa stałe, ciekłe bądź gazowe,
- odnawialne i niekonwencjonalne źródła energii źródła wykorzystujące energię geotermalną, słoneczną, odpadową, jądrową a także energie powstałą ze spalania biomasy lub gazu wytworzonego w biogazowi rolniczej.

Innym kryterium podziału źródeł energii wykorzystywanych do zasilania siłowni parowych może być temperatura źródła ciepła, dzięki czemu można wyróżnić:

- źródła wysokotemperaturowe,
- źródła średniotemperaturowe,
- źródła niskotemperaturowe.

W literaturze tematu jednak nie funkcjonuje jednoznaczny podziału źródeł ciepła ze względu na temperaturę. Dla przykładu same źródła geotermalne mają różne klasyfikacje, a wynikają one przede wszystkim z zasobów danego kraju i źródła uznane w Polsce za wysokotemperaturowe (powyżej 90°C) na Islandii uznawane są za niskotemperaturowe. Z tego względu kryterium temperatury należy uznać za subiektywne i dodatkowe.

5. CEL I ZAKRES PRACY

Na podstawie przeglądu literatury oraz przeprowadzonej analizy stanu wiedzy na temat nisko- i średniotemperaturowych siłowni parowych, pracujących według obiegu porównawczego o parametrach nadkrytycznych, stwierdzono, że mimo znacznej ilości publikacji na ten temat brakuje spójnych wniosków na temat efektywności pracy siłowni nadkrytycznej. Autorzy różnych publikacji często podają sprzeczne informacje oraz wnioski dotyczące osiąganych mocy i sprawności siłowni. Brakuje również spójnej metodyki obliczeń, pozwalającej na rzetelną ocenę efektywności pracy siłowni o parametrach nisko- i średniotemperaturowych z obiegiem nadkrytycznym.

Ponadto w wielu publikacjach brakuje rozróżnienia między nadkrytycznym obiegiem jedno- oraz dwufazowym co może prowadzić do mylnego przekonania, iż jest to ten sam rodzaj obiegu.

Tym samym, w ramach niniejszej pracy zaplanowano przeprowadzenie analizy termodynamicznej pracy siłowni parowej realizowanej według nadkrytycznego, dwufazowego obiegu Clausiusa- Rankine'a.

Postawiono następująca tezę:

Dla obiegu nadkrytycznego, realizowanego w określonych warunkach doprowadzania i wyprowadzania ciepła, istnieje ciśnienie pary świeżej, przy którym efektywność pracy siłowni jest najwyższa.

W związku z powyższym celem pracy, co jednocześnie determinuje jej zakres, jest:

- a) wykonanie obliczeń efektywności pracy siłowni ORC pracującej według nadkrytycznego obiegu Clausiusa-Rankine'a, na podstawie kryteriów:
 - sprawność termiczna,
 - sprawność egzergetyczna,
 - moc siłowni

oraz dokonanie oceny porównawczej efektywności pracy siłowni.

Wymienione powyżej kryteria oceny zostaną rozważone głównie w funkcji ciśnienia pary wlotowej do turbiny.

- b) wykonanie odpowiednich obliczeń, których celem jest analiza termodynamiczna wielkości jednostkowych, to znaczy określenie wielkości charakterystycznych w odniesieniu do kilograma substancji roboczej w obiegu, w funkcji ciśnienia pary wlotowej do turbiny;
- c) wskazanie możliwości poprawy efektywności pracy siłowni na parametry nadkrytyczne;
d) wykazanie zalet/wad płynących z zastosowania nadkrytycznego obiegu Clausiusa-Rankine'a w odniesieniu do obiegu ORC na parametry podkrytyczne.

6. ZAŁOŻENIA POCZĄTKOWE

W ramach niniejszego punktu przedstawiono założenia, jakie zostały przyjęte, po to aby zrealizować cele pracy (opracowanie modeli obliczeniowych siłowni, na podstawie których uzyskano wyniki obliczeń) oraz aby wyniki obliczeń dla poszczególnych wariantów mogły być ze sobą porównane. Przedstawiono także krótką charakterystykę płynów roboczych jakie zostały uwzględnione w dalszej części pracy.

6.1. Założenia początkowe

Założeniem podstawowym, determinującym pozostałe założenia jest wybór źródła energii napędowej dla siłowni. W ramach pracy przyjęto, że:

- nośnikiem energii od źródła ciepła do wytwornicy pary jest woda w stanie ciekłym,
- rozpatrzono nisko i średniotemperaturowe źródło ciepła, a do obliczeń przyjęto, że początkowa temperatura nośnika górnego źródła ciepła wynosi: t_{s1} = 100, 120, 140, 160 [°C],
- temperatura końcowa nośnika energii t_{s2}=60 [°C],
- strumień ciepła przekazywanego w wymienniku nadkrytycznym od wody będącej nośnikiem energiido czynnika roboczego wynosił Q_d= 2514 [kW].

Od strony obiegu siłowni parowej (czynnika roboczego) przyjęto następujące założenia:

- temperatura pary na wlocie do turbiny jest o Δt=5 [K] niższa od temperatury źródła ciepła (Δt_{min} = 5K), a więc odpowiednio dla danej temperatury źródła ciepła wynosi: t_{n1} = 95, 115, 135, 155 [°C].
- dla każdej zadanej temperatury pary na wlocie do wytwornicy pary t_{n1} wykonano obliczenia dla trzech wartości ciśnienia (rys. 12):
 - p_{max} maksymalne ciśnienie górne przy zadanej temperaturze pary, wyznaczone poprzez dobranie najniższej wartości entropii właściwej przy której rozprężanie pary nie zachodzi w obszarze pary mokrej,
 - p_{min} ciśnienie górne wyższe od krytycznego o Δp_{min} ,
 - p_{śr} ciśnienie górne pośrednie, dobrane według zadanej temperatury parowania oraz wartości entropii właściwej uśrednionej arytmetycznie względem dwu poprzednich przypadków.

Wykonanie obliczeń dla różnych wartości ciśnienia pary na wlocie do turbiny umożliwia zbadanie jaki wpływ na efektywność pracy siłowni ma wzrost zarówno temperatury pary na wlocie do turbiny jak i ciśnienia górnego.

Ponadto przyjęto, że:

- ciśnienie p_{min} jest wyższe od ciśnienia krytycznego o Δp_{min} = 0,001 [MPa],
- temperatura skraplania czynnika wynosit_{n2} = t_{n3} = 30 [°C],
- straty ciepła w poszczególnych przemianach obiegu uznano za pomijalnie małe (założenie upraszczające).

6.2. Charakterystyka czynników roboczych objętych analizą

Do analizy wybrano 15 płynów roboczych, które należą zarówno do grupy czynników mokrych jak i suchych. Głównym kryterium doboru czynników roboczych jest ich temperatura krytyczna, która powinna mieścić się pomiędzy przyjętą temperaturą skraplania płynu roboczego a założoną temperaturą pary na wlocie do turbiny i dla wyselekcjonowanych czynników zawiera się w przedziale 44,13÷151,98 [°C]. Podstawowe wielkości oraz informacje na temat wybranych czynników roboczych zestawiono w tabeli 11. Kształt krzywych nasycenia wszystkich czynników roboczych oraz porównanie względem krzywych nasycenia dla wody przedstawiono na rysunkach 13 – 17.

Tabela 11. Podstawowe właściwości czynników roboczych wybranych do analizy(opracowanie własne na podstawie [81])

Nr	Czynnik	Wzór chemiczny	Rodzaj	T _{kr}	P _{kr}	T _{max}	P _{max}	T _{max} - T _{kr}
				[°C]	[MPa]	[°C]	[MPa]	[°C]
1	R41 (fluorometan)	CF3F	Mokry	44,13	5,897	151,85	70	107,72
2	R125 (Pentafluoroetan)	CHF2CF3	Mokry	66,023	3,6177	226,85	60	160,827
3	R143a (1.1.1-trifluoroetan)	СҒЗСНЗ	Mokry	72,707	3,761	376,85	100	304,143
4	R32 (difluorometan)	CH2F2	Mokry	78,105	5,782	161,85	70	83,745
5	Propylen (propen)	C3H6	Mokry	91,061	4,555	301,85	1000	210,789
6	R1234yf (2,3,3,3-tetrafluoropropen)	C3H2F4	Suchy	94,7	3,3822	136,85	30	42,15
7	R134a (1,1,1,2-tetrafluoroetan)	CF3CH2F	Mokry	101,06	4,0593	181,85	70	80,79
8	R227ea (1,1,1,2,3,3,3- heptafluoropropan)	CF3CHFCF3	Suchy	101,75	2,925	201,85	60	100,1
9	R161 (fluoroetan)	C2H5F	Mokry	102,15	5,091	126,85	50	24,7
10	R152a (1,1-difluoroetan)	CHF2CH3	Mokry	113,26	4,5168	226,85	60	113,59
11	RC318 (oktafluorocyklobutan)	C4F8	Suchy	115,23	2,7775	349,85	60	234,62
12	R236fa (1,1,1,3,3,3- heksafluoropropan)	CF3CH2CF3	Suchy	124,92	3,2	226,85	40	101,93
13	Amoniak	NH3	Mokry	132,25	11,333	426,85	100	294,6
14	Izobutan (2-metylopropan)	CH(CH3)3	Suchy	134,66	3,629	301,85	35	167,19
15	Butan	CH3-2(CH2)-CH3	Suchy	151,98	3,796	301,85	200	149,87

Rysunek 13. Kształt krzywych nasycenia czynników R41, R125, R143a oraz R32 w układzie T-s

Rysunek 14. Kształt krzywych nasycenia czynników R1234yf, R134a, R227ea, R161 oraz propylenu w układzie T-s

Rysunek 15. Kształt krzywych nasycenia czynników RC318, R236fa, R152a, butanu oraz izobutanu w układzie T-s

Rysunek 16. Porównanie kształtu krzywych nasycenia wybranych czynników roboczych względem amoniaku w układzie T-s

Rysunek 17. Porównanie kształtu krzywych nasycenia amoniaku, czynnika R32 oraz wody w układzie Ts

7. MODEL MATEMATYCZNY SIŁOWNI PAROWEJ PRACUJĄCEJ WG OBIEGU NADKRYTYCZNEGO CLAUSIUSA - RANKINE'A

Model matematyczny siłowni pracującej wg obiegu nadkrytycznego Clausiusa- Rankine'a opiera się na równaniach bilansu energii urządzeń wchodzących w skład siłowni parowej, z uwzględnieniem założenia o pominięciu strat energii w procesach wymiany ciepła.

Podstawowe urządzenia siłowni ORC biorące udział w realizacji nadkrytycznego obiegu Clausiusa-Rankine'a oraz punkty charakterystyczne obiegu przedstawiono na rysunku 18.

Rysunek 18. Schemat siłowni z nadkrytycznym obiegiem Clausiusa-Rankine'a wraz z zaznaczeniem punktów charakterystycznych obiegu

Podstawowe wielkości charakteryzujące pracę siłowni parowej z nadkrytycznym obiegiem Clausiusa- Rankine'a można obliczyć korzystając zależności (7.1) i (7.2).

moc obiegu C-R

$$N_{C-R} = N_t - N_p \tag{7.1}$$

sprawność obiegu C-R

$$\eta_{C-R} = \frac{N_{C-R}}{\dot{Q}_d} \tag{7.2}$$

gdzie:

moc turbiny

$$N_t = \dot{m}_n \cdot (h_{n1} - h_{n2s}) \tag{7.3}$$

moc pompy

$$N_p = \dot{m}_n \cdot (h_{n4s} - h_{n3}) \tag{7.4}$$

strumień ciepła wyprowadzanego:

$$\dot{Q}_w = \dot{m}_n \cdot (h_{n2s} - h_{n3}) \tag{7.5}$$

Ponadto, istotne jest równanie bilansu energii wytwornicy pary (zależność 7.6), które po odpowiednich przekształceniach może być użyte do obliczenia masowego strumienia czynnika roboczego \dot{m}_n .

$$\dot{Q}_d = \dot{m}_n \cdot (h_{n1} - h_{n4s}) \tag{7.6}$$

$$\dot{m}_n = \frac{\dot{Q}_d}{h_{n1} - h_{n4s}}$$
(7.7)

7.1. Metodyka wyznaczania kalorycznych i termicznych parametrów stanu

Wyznaczanie kalorycznych i termicznych parametrów stanu czynników roboczych wykonane zostało za pomocą bazy danych właściwości termodynamicznych REFPROP 9.1 [81].

Określenie parametrów stanu czynnika roboczego należy rozpocząć od ustalenia temperatury i odpowiadającego mu ciśnienia czynnika w skraplaczu pamiętając, że skraplanie jest przemianą izobaryczno - izotermiczną, przez co spełnione są warunki (7.8) oraz (7.9):

$$t_{n2s} = t_{n3} (7.8)$$

$$p_{n2s} = p_{n3} (7.9)$$

Na podstawie wartości temperatury oraz ciśnienia w skraplaczu określono pozostałe parametry stanu czynnika podczas skraplania tj. entalpię właściwą (h_{n2s}, h_{n3}) oraz entropię właściwą (s_{n2s}, s_{n3}).

Następnie ustalono parametry stanu pary na wlocie do turbiny tj. w punkcie n1. W zależności od temperatury źródła ciepła przyjęto temperaturę pary zgodnie z założeniem (7.10):

$$t_{n1} \le t_{s1} - \Delta t_{min} \tag{7.10}$$

Ciśnienie pary dobrano z zakresu <pmin; pgr>,

gdzie p_{min} to najniższe ciśnienie nadkrytyczne, które spełnia warunek (7.11):

$$p_{min} = p_{kr} + \Delta p_{min} \tag{7.11}$$

natomiast p_{gr} to ciśnienie graniczne, które zostało wyznaczone względem zadanej temperatury pary oraz entropii właściwej granicznej s_{gr} , która została zdefiniowana następująco:

- dla czynników mokrych:

$$s_{gr} = s_{n2} \tag{7.12}$$

- dla czynników suchych:

$$s_{gr} = s_{max} \ dla \ x = 1 \tag{7.13}$$

Na podstawie znanych wartości ciśnienia i entropii w punkcie n1 określonowartość entalpii właściwej pary na wlocie do turbiny h_{n1} .

Kolejnym krokiem było wyznaczenie parametrów stanu czynnika za pompą obiegową tj. w punkcie n_{4s}. W pierwszej kolejności określano temperaturę t_{n4s} oraz entalpię właściwą h_{n4s} czynnika za pompą, biorąc pod uwagę warunek (7.14):

$$p_{n4s} = p_{n1} \tag{7.14}$$

oraz warunek (7.15):

$$s_{n4s} = s_{n3}$$
 (7.15)

Należy pamiętać, że w przypadku obiegu nadkrytycznego rozprężanie odbywa się do punktu n2 (rys. 11-12) jedynie w przypadku czynników mokrych od ciśnienia p_{gr} dlatego wówczas spełnione powinny być warunki (7.16 – 7.19):

$$t_{n2s} = t_{n2} \tag{7.16}$$

$$p_{n2s} = p_{n2} \tag{7.17}$$

$$h_{n2s} = h_{n2}$$
 (7.18)

$$s_{n2s} = s_{n2}$$
 (7.19)

Dla wszystkich pozostałych przypadków (rys. 11-12) rozprężanie pary czynnika odbywa się do punktu n2s, dlatego należy dodatkowo wyznaczyć wartości ciśnienia p_{n2s} oraz entropii właściwej s_{n2s} czynnika w tym punkcie biorąc pod uwagę warunek (7.20):

$$p_{n2s} = p_{n2} = p_{n3} \tag{7.20}$$

oraz warunek (7.21):

$$s_{n2s} = s_{n1}$$
 (7.21)

i na tej podstawie także można określić wartości entalpii właściwej h_{n2s} oraz temperaturę t_{n2s} w punkcie n2s.

7.2. Entalpie nośnika energii oraz czynnika roboczego

Strumienie entalpii nośnika energii w odpowiednich punktach obiegu mogą być obliczone z poniższych zależności:

- na dopływie do wytwornicy pary:

$$\dot{H}_{s1} = \dot{m}_s \cdot h_{s1}(t_{s1}) \tag{7.23}$$

- na wypływie z wytwornicy pary:

 $\dot{H}_{s2} = \dot{m}_s \cdot h_{s2}(t_{s1}) \tag{7.24}$

Koniecznym jest także uwzględnienie zależności do obliczania strumienia entalpii czynnika roboczego w siłowni. Dokonano tego za pomocą zależności (7.25):

$$\dot{H}_n = \dot{m}_n \cdot h_n \tag{7.25}$$

Po uwzględnieniu zależności (7.23) - (7.25) można zapisać równanie bilansu energii w wytwornicy pary - zależność (7.26):

$$\dot{Q}_d = \dot{H}_{s1} - \dot{H}_{s2} = \dot{H}_{n1} - \dot{H}_{n4s}$$
 (7.26)

Równanie (7.26) składa się z równania bilansu energii w wytwornicy pary po stronie nośnika energii doprowadzanej - zależność (7.27):

$$\dot{Q}_d = \dot{H}_{s1} - \dot{H}_{s2} = \dot{m}_s \cdot \left[\left(h_{s1}(t_{s1}) \right) - \left(h_{s2}(t_{s2}) \right) \right]$$
(7.27)

oraz z równania bilansu energii w wytwornicy pary dla czynnika roboczego - - zależność (7.28)

$$\dot{Q}_d = \dot{H}_{n1} - \dot{H}_{n4s} = \dot{m}_n \cdot (h_{n1} - h_{n4s})$$
 (7.28)

Równanie bilansu energii w wytwornicy pary po stronie nośnika energii strumienia ciepła doprowadzonego może być zdefiniowane także w sposób jak to przedstawiono za pomocą zależności (7.29):

$$\dot{Q}_d = \dot{m}_s \cdot cp_s |_{t_{s2}}^{t_{s1}} \cdot (t_{s1} - t_{s2})$$
(7.29)

8. ANALIZA TERMODYNAMICZNA NADKRYTYCZNEGO OBIEGU - CLAUSIUSA-RANKINE'A

Analiza termodynamiczna nadkrytycznego obiegu Clausiusa-Rankine'a obejmuje wykonanie obliczeń podstawowych wielkości charakteryzujących pracę siłowni ORC w wariancie dla obiegu nadkrytycznego (przedstawionej w punkcie 7) oraz w wariancie dla obiegu podkrytycznego (według metodyki podanej w załączniku 4). Wyniki obliczeń dla obiegu nadkrytycznego podano w formie tabel w załączniku 8, natomiast dla obiegu podkrytycznego w załączniku 5. Następnie dokonano analizy wpływu wartości temperatury pary na wlocie do turbiny oraz wpływu wartości ciśnienia górnego przy stałej temperaturze pary na wlocie do turbiny. Ponadto dokonano porównania wielkości charakteryzujących pracę siłowni z obiegiem nadkrytycznym z maksymalnymi możliwymi do uzyskania wielkościami dla siłowni podkrytycznej.

Dodatkowo wykonano analizę porównawczą siłowni nadkrytycznej i podkrytycznej dla różnych czynników roboczych odparowywanych przy tej samej temperaturze w celu wykazania zasadności (lub jej braku) stosowania obiegu nadkrytycznego przy niskich temperaturach źródła ciepła.

W nieco inny sposób dokonano analizy efektywności pracy obiegu z czynnikiem nieorganicznym amoniakiem. Z uwagi na wielkości charakteryzujące ten czynnik roboczy nie można zrealizować obiegu nadkrytycznego z udziałem amoniaku, spełniającego założenia przedstawione w rozdziale 7 pracy (ze względu na zbyt wysoką temperaturę krytyczną), jednakże dokonano porównania efektywności pracy siłowni podkrytycznej pracującej z amoniakiem z wynikami uzyskanymi dla siłowni nadkrytycznych pracujących z pozostałymi czynnikami.

8.1. Możliwości realizacji nadkrytycznego obiegu Clausiusa- Rankine'a

Z uwagi na podane w rozdziale 7 kryteria realizacji obiegów nadkrytycznych nie wszystkie warianty nadkrytycznego obiegu Clausiusa-Rankine'a są możliwe do zrealizowania. Wśród przyczyn uniemożliwiających realizację obiegu, z określonym czynnikiem, można wyróżnić następujące:

(1) niewystarczająco wysoka temperatura pary na wlocie do turbiny i/lub zbyt wysokie ciśnienie krytyczne czynnika roboczego – sytuacja taka może wystąpić nawet jeżeli temperatura pary na wlocie do turbiny jest wyższa od temperatury krytycznej czynnika roboczego i objawia się tym, iż czynnik roboczy nie może osiągnąć ciśnienia nadkrytycznego, lub osiągnięcie go może nastąpić przy entropii właściwej, przy której rozprężanie czynnika musiałoby odbywać się w obszarze pary mokrej,

- (2) temperatura pary na wlocie do turbiny jest niższa niż temperatura krytyczna czynnika roboczego – w takim przypadku nie jest możliwe osiągnięcie ciśnienia nadkrytycznego,
- (3) temperatura pary na wlocie do turbiny jest wyższa niż temperatura maksymalna czynnika roboczego.

W tabeli 12 przedstawiono wykaz wariantów możliwych do zrealizowania oraz tych, których realizacja nie jest możliwa z podaniem odpowiedniej przyczyny.

			temperatura pary na wlocie do turbiny				
Nr	czynnik	ciśnienie górne	95°C	115°C	135°C	155°C	
1	R41	minimalne	+	+	+	- (3)	
		pośrednie	+	+	+	- (3)	
		graniczne	+	+	+	- (3)	
2	R125	minimalne	+	+	+	+	
		pośrednie	+	+	+	+	
		graniczne	+	+	+	+	
3	R143a	minimalne	+	+	+	+	
		pośrednie	+	+	+	+	
		graniczne	+	+	+	+	
4	R32	minimalne	- (1)	+	+	+	
		pośrednie	- (1)	+	+	+	
		graniczne	- (1)	+	+	+	
5	Propylen	minimalne	- (1)	+	+	+	
		pośrednie	- (1)	+	+	+	
		graniczne	- (1)	+	+	+	
6	R1234yf	minimalne	- (1)	+	+	- (3)	
		pośrednie	- (1)	+	+	- (3)	
		graniczne	- (1)	+	+	- (3)	
7	R134a	minimalne	- (2)	+	+	+	
		pośrednie	- (2)	+	+	+	
		graniczne	- (2)	+	+	+	
8	R227ea	minimalne	- (2)	+	+	+	
		pośrednie	- (2)	+	+	+	
		graniczne	- (2)	+	+	+	
9	R161	minimalne	- (2)	- (1)	- (3)	- (3)	
		pośrednie	- (2)	- (1)	- (3)	- (3)	
		graniczne	- (2)	- (1)	- (3)	- (3)	
10	R152a	minimalne	- (2)	- (1)	+	+	
		pośrednie	- (2)	- (1)	+	+	
		graniczne	- (2)	- (1)	+	+	
11	RC318	minimalne	- (2)	- (2)	+	+	
		pośrednie	- (2)	- (2)	+	+	
		graniczne	- (2)	- (2)	+	+	
12	R236fa	minimalne	- (2)	- (2)	+	+	
		pośrednie	- (2)	- (2)	+	+	
		graniczne	- (2)	- (2)	+	+	
13	Amoniak	minimalne	- (1)	- (1)	- (1)	- (1)	
		pośrednie	- (1)	- (1)	- (1)	- (1)	
		graniczne	- (1)	- (1)	- (1)	- (1)	
14	Izobutan	minimalne	- (2)	- (2)	- (1)	+	
		pośrednie	- (2)	- (2)	- (1)	+	
		graniczne	- (2)	- (2)	- (1)	+	
15	Butan	minimalne	- (2)	- (2)	- (2)	+	
		pośrednie	- (2)	- (2)	- (2)	+	
		graniczne	- (2)	- (2)	- (2)	+	

Tabela 12. Wykaz rozpatrywanych w pracy wariantów realizacji nadkrytycznego obiegu C-R oraz możliwości ich realizacji; oznaczenia: (+) – możliwy, (-) – nie możliwy do zrealizowania

8.2. Wpływ temperatury źródła ciepła

W niniejszym podrozdziale zaprezentowano wyniki obliczeń: mocy obiegu, sprawności termicznej, pracy przetłaczania, strumienia czynnika roboczego w nadkrytycznym obiegu ORC, w funkcji temperatury pary na wlocie do turbiny (przy określonym poziomie ciśnienia górnego). W przypadku czynników: R161, izobutan oraz butan wykazanie tendencji nie jest możliwe z powodu możliwości realizacji obiegu jedynie przy jednej z zakładanych wartości temperatury pary na wlocie do turbiny, i dla tej temperatury wymienione wielkości na rysunkach 19 – 30 zaznaczono punktami, co daje możliwości porównania wyników obliczeń do tych uzyskanych dla innych płynów roboczych.

8.2.1. Moc obiegu

Na rysunku 19 przedstawiono wykres mocy obiegu w funkcji temperatury pary świeżej przy minimalnym ciśnieniu górnym, z którego wynika, że największą moc, przy takim poziomie ciśnienia górnego uzyskano dla czynników: butan, izobutan oraz R152a, przy temperaturze pary na wlocie do turbiny wynoszącej 155 °C oraz, że tendencje zmian wartości mocy następujące podczas wzrostu temperatury pary są niewielkie. Największy wzrost nastąpił w przypadku czynnika R32, jednak jak widać na przykładzie czynnika R227ea wzrost temperatury pary świeżej przy minimalnym ciśnieniu górnym może skutkować spadkiem mocy.

Rysunek 19.Wykres mocy obiegu w funkcji temperatury pary na wlocie do turbiny przy minimalnym ciśnieniu górnym (p_{min})

Na rysunku 20 przedstawiono wykres mocy obiegu w funkcji temperatury pary na wlocie do turbiny przy pośrednim ciśnieniu górnym. Przy takiej wartości ciśnienia górnego obserwuje się dość znaczny wzrost wartości mocy obiegu dla wszystkich rozpatrywanych

510 0 —**—**R41 —**--** R125 8 470 —**—** R143a A —**—** R32 430 ---- Propylen — R1234yf Moc [km] 390 350 -**--** R134a —**—** R227ea —•— R161 —•— R152a 310 —**•**— Rc318 -**---** R236fa 270 — Butan 230 90 100 130 140 150 110 120 160 Temperatura pary na wlocie do turbiny [°C]

czynników roboczych. Ponownie najwyższe wartości uzyskano dla czynników butan, izobutan oraz R152a, przy temperaturze pary na wlocie do turbiny wynoszącej 155 °C.

Rysunek 20.Wykres mocy obiegu w funkcji temperatury pary na wlocie do turbiny przy pośrednim ciśnieniu górnym (p_{sr})

Na kolejnym rysunku (rys. 21) przedstawiono wykres mocy obiegu w funkcji temperatury pary świeżej o granicznej (najwyższej) wartości ciśnienia górnego w obiegu. Analizując ten wykres można zauważyć, że przy ciśnieniu granicznym następuje tendencja wzrostowa podobnie jak przy ciśnieniu pośrednim. Najwyższe wartości uzyskano dla obiegów z czynnikami: butan, izobutan, R152a oraz R125, przy temperaturze pary na wlocie do turbiny wynoszącej 155°C.

Rysunek 21. Wykres mocy obiegu w funkcji temperatury pary na wlocie do turbiny przy granicznym ciśnieniu górnym (p_{gr})

8.2.2. Sprawność obiegu

Analizując rysunek 22, na którym przedstawiono wykres sprawności obiegu w funkcji temperatury pary na wlocie do turbiny można stwierdzić, że podobnie jak w przypadku mocy, sprawność zmienia się nieznacznie w zależności od zmian temperatury pary świeżej przy założeniu minimalnego ciśnienia górnego.

Rysunek 22. Wykres sprawności obiegu w funkcji temperatury pary na wlocie do turbiny przy minimalnej wartości ciśnienia górnego (p_{min})

Na rysunku 23 natomiast zaprezentowano wykres sprawności termicznej obieguw funkcji temperatury pary na wlocie do turbiny przy założeniu, że para ta ma ciśnienie określone jako pośrednie. Analizując ten wykres można zauważyć, że wartość sprawności rośnie wraz ze wzrostem temperatury pary na wlocie do turbiny w przypadku wszystkich rozpatrywanych czynników. Najniższa wartość sprawności została osiągnięta w przypadku czynnika R41 przy temperaturze pary na wlocie do turbiny wynoszącej 95°C, natomiast najwyższą wartość osiągnięto w przypadku butanu przy temperaturze 155°C.

SZYMON MOCARSKI: Analiza i ocena termodynamiczna efektywności pracy nisko i średniotemperaturowej siłowni parowej z obiegiem nadkrytycznym

Rysunek 23. Wykres sprawności obiegu w funkcji temperatury pary na wlocie do turbiny przy pośrednim ciśnieniu górnym (pśr)

Następnie analizując wyniki przedstawione na rysunku 24 można zauważyć, że przy ciśnieniu granicznym, podobnie jak w przypadku wariantu zakładającego pośrednią wartość ciśnienia górnego, sprawność obiegu rośnie wraz ze wzrostem temperatury pary na wlocie do turbiny. Najwyższą wartość osiągnięto dla obiegu zbutanem jako płynem roboczym przy temperaturze 155°C, a najniższą dla czynnika R32 przy temperaturze 95°C.

Rysunek 24. Wykres sprawności obiegu w funkcji temperatury pary na wlocie do turbiny przy granicznym ciśnieniu górnym (p_{gr})

8.2.3. Natężenie przepływu czynnika roboczego

Rysunek 25 przedstawia wykres zależności natężenia przepływu czynnika roboczego w funkcji temperatury pary na wlocie do turbiny.

Rysunek 25. Wykres natężenia przepływu czynnika roboczego w funkcji temperatury pary na wlocie do turbiny przy minimalnym ciśnieniu górnym (p_{min})

19 п. <u>R41</u> 18 0 17 -0 D-—**—** R143a -0 16 Л —**—** R32 15 Strumień masy [kg/s] ---- Propylen 0 14 — R1234yf • 13 ---- R134a 6 12 -—**—** R227ea 0 11 —•— R161 0 10 —•— R152a 9 —**•**— Rc318 8 -•— R236fa 7 8 6 - Butan 8 5 90 100 120 130 110 140 150 160 Temperatura pary na wlocie do turbiny [°C]

Analizując ten wykres można zauważyć, że przy ciśnieniu minimalnym wartość natężenia przepływu czynnika roboczego maleje wraz ze wzrostem temperatury pary świeżej.

Rysunek 26. Wykres natężenia przepływu czynnika roboczego w funkcji temperatury pary na wlocie do turbiny dla pośredniej wartości ciśnienia górnego (pśr)

Analizując wielkości zawarte na rysunku 26, na którym przedstawiono wykres natężenia przepływu czynnika roboczego w funkcji temperatury pary na wlocie do turbiny przy pośrednim ciśnieniu górnym można zauważyć, że w przypadku tak zdefiniowanej wartości

ciśnienia górnego wartość natężenia przepływu nie zawsze maleje wraz ze wzrostem temperatury pary na wlocie do turbiny, a krzywe mają nieco bardziej płaski przebieg co wskazuje na mniejsze zmiany niż w przypadku ciśnienia minimalnego. Ponadto w przypadku czynnika RC318 nastąpił wzrost natężenia przepływu od temperatury 135°C do 155°C a w przypadku czynnika R 227ea spadek od temperatury 115°C do 135°C a następnie delikatny wzrost od temperatury 135°C do 155°C.

Na rysunku 27 przedstawiono wykres natężenia przepływu czynnika roboczego w funkcji temperatury pary na wlocie do turbiny przy granicznym ciśnieniu górnym. Analizując ten rysunek można stwierdzić, że natężenie przepływu, podobnie jak w przypadku ciśnienia minimalnego, spada wraz ze wzrostem temperatury pary na wlocie do turbiny i w przeciwieństwie do ciśnienia pośredniego brak jest jakichkolwiek odstępstw od tej ogólnej tendencji.

Rysunek 27. Wykres natężenia przepływu czynnika roboczego w funkcji temperatury pary na wlocie do turbiny przy granicznym ciśnieniu górnym (pgr)

8.2.4. Moc przetłaczania

Na rysunku 28 przedstawiono wykres mocy pompowania w funkcji temperatury pary na wlocie do turbiny.

SZYMON MOCARSKI: Analiza i ocena termodynamiczna efektywności pracy nisko i średniotemperaturowej siłowni parowej z obiegiem nadkrytycznym

Rysunek 28.Wykres mocy pompowania w funkcji temperatury pary na wlocie do turbiny przy minimalnym ciśnieniu górnym (p_{min})

Analizując ten wykres można zauważyć, że w przypadku założenia ciśnienia minimalnego moc pompowania zmniejsza się wraz ze wzrostem temperatury pary świeżej.

Na rysunku 29 przedstawiono wykres mocy pompowania w funkcji temperatury pary na wlocie do turbiny, z którego wynika, że przy tak zdefiniowanej wartości ciśnienia górnego wraz ze wzrostem temperatury pary na wlocie do turbiny następuje wzrost mocy pompowania.

Rysunek 29. Wykres mocy pompowania w funkcji temperatury pary na wlocie do turbiny przy pośrednim ciśnieniu górnym (p_{sr})

Szczególnie duży wzrost mocy pompowania można zaobserwować w przypadku czynnika R125 w przedziale temperatury pary na wlocie do turbiny od 115 do 155°C. Ponadto dość wysoka wartość mocy pompowania jest obserwowana w przypadku czynnika R41 w całym zakresie temperatury pary oraz R143a i R227ea przy temperaturze 155°C.

Rysunek 30 z kolei przedstawia wykres mocy pompowania w funkcji pary na wlocie do turbiny przy założeniu granicznej wartości ciśnienia górnego. Analizując ten wykres można zaobserwować dalszy wzrost mocy pompowania w zależności do wzrostu temperatury pary na wlocie do turbiny. Najwyższe wartości zaobserwować można w przypadku czynnika R125 dla temperatury pary na wlocie do turbiny wynoszącej 135 i 155°C, czynnika R41 dla temperatury 135°C oraz w przypadku czynników R143a i R227ea przy temperaturze pary wynoszącej 155°C.

Wysoka wartość pracy pompowania jest spowodowana wysokimi wartościami ciśnienia górnego, jakie czynnik roboczy musi osiągnąć aby możliwe było zrealizowanie obiegu nadkrytycznego.

Rysunek 30. Wykres mocy pompowania w funkcji temperatury pary na wlocie do turbiny przy granicznym ciśnieniu górnym (p_{gr})

8.3. Wpływ wartości ciśnienia górnego

W podrozdziale tym zaprezentowano wyniki obliczeń podstawowych parametrów pracy siłowni ORCz nadkrytycznym obiegiem Clausiusa-Rankine'adla określonych wartości ciśnienia górnego (minimalnego, pośredniego i granicznego) i dla stałej wartości temperaturze pary na wlocie do turbiny. Wyniki przedstawiono w formie wykresów słupkowych, a zestawienie wartości liczbowych w postaci tabel zawarte zostało w załączniku 9.

8.3.1. Moc obiegu

Na rysunku 31przedstawiono wykres zależności mocy obiegu w funkcjiciśnienia górnego przy stałej temperaturze pary na wlocie do turbiny wynoszącej T_{par}=95°C.

Rysunek 31. Wykres zależności mocy obiegu od przyjętej wartości ciśnienia górnego przy Tpar=95°C

Jak wynika z analizy danych przedstawionych na rysunku 31 jedynie w przypadku czynnika R32 wzrost ciśnienia górnego powoduje spadek mocy obiegu. Jest to spowodowane tym, że wariant ten nie jest możliwy do zrealizowania, jednak został przedstawiony na wykresie jako jedenz przykładów obliczenia mocy obiegu nadkrytycznego ale nie spełniającego założeń przedstawionych w rozdziale 7.

Na kolejnymwykresie przedstawionym na rysunku 32 pokazano zależność mocy obiegu w funkcji wartości ciśnienia górnego przy stałej temperaturze pary na wlocie do turbiny wynoszącej T_{par}=115°C.

SZYMON MOCARSKI: Analiza i ocena termodynamiczna efektywności pracy nisko i średniotemperaturowej siłowni parowej z obiegiem nadkrytycznym

Rysunek 32. Wykres zależności mocy obiegu od przyjętej wartości ciśnienia górnego przy Tpar=115°C

Analizując wykres pokazany na rysunku 32 można zauważyć, iż w przypadku czynnika R161 zarówno przy ciśnieniu pośrednim jak i granicznym następuje spadek mocy obiegu w stosunku do ciśnienia minimalnego. Jest to spowodowane tym, iż przyjęto, że wariant ten nie jest możliwy do zrealizowania i zaprezentowano go jako kolejny przykład nieprawidłowego prowadzenia obiegu nadkrytycznego. Ponadto można także zauważyć, iż w przypadku czynnika R1234yf następuje spadek mocy przy ciśnieniu granicznym, jednak w tym przypadku obieg jest realizowany prawidłowo.

Z analizy kolejnego rysunku(rys. 33), na którym przedstawiono wykres zależności mocy obiegu w funkcji ciśnienia górnego przy stałej temperaturze pary świeżej wynoszącej T_{par}=135°C można zauważyć, iż dla czynników R1234yf, R227eai R236fa wartości mocy uzyskane przy ciśnieniu granicznym są nieco niższe od tych uzyskanych przy ciśnieniu pośrednim, lecz wyższe od tych uzyskanych przy ciśnieniu minimalnym. W przypadku pozostałych czynników obserwuje się ogólny wzrost mocy następujący wraz ze wzrostem ciśnienia górnego.

Rysunek 33. Wykres zależności mocy obiegu od przyjętej wartości ciśnienia górnego przy tpar=135°C

Na rysunku 34 przedstawiono wykres zależności mocy obiegu w funkcji ciśnienia górnego przy stałej temperaturze pary na wlocie do turbiny wynoszącej T_{par}=155°C.

Rysunek 34. Wykres zależności mocy obiegu od przyjętej wartości ciśnienia górnego przy Tpar=155°C

Analizując wyniki obliczen przedstawione na rysunku 34 można zauważyć, że spadek mocy przy wzroście ciśnienia górnego następuje w przypadku czynników R236fa oraz izobutanu od ciśnienia pośredniego do granicznego, oraz dla butanu, w przypadku którego najwyższe wartości uzyskano przy ciśnieniu minimalnym.

8.3.2. Sprawność obiegu

Analizując rysunek 35, który przedstawia zależność pomiędzy sprawnością termiczną obiegu a przyjętą wartością ciśnienia górnego, przy stałej wartości temperatury pary na wlocie do turbiny (wynoszącej T_{par}=95°C) można zauważyć, że jedynie w przypadku czynnika R32, podwyższenie ciśnienia roboczego spowodowało spadek sprawności obiegu. Czynnik R32 w tym wariancie temperatury został podany jako przykład realizacji obiegu niezgodnego z założeniami (rozdział 7).

SZYMON MOCARSKI: Analiza i ocena termodynamiczna efektywności pracy nisko i średniotemperaturowej siłowni parowej z obiegiem nadkrytycznym

Rysunek 35. Wykres zależności sprawności termicznej obiegu w funkcji ciśnienia górnego przy Tpar=95°C

Na rysunku 36, przedstawiono zależność pomiędzy sprawnością obiegu a przyjętą wartością ciśnienia górnego, przy stałej wartości temperatury pary na wlocie do turbiny wynoszącej t_{par}=115°C. Wynika z niego iż jedynie w przypadku czynnika R1234yf następuje niewielki spadek sprawności termicznej obiegu, przy ciśnieniu granicznym w stosunku do ciśnienia pośredniego oraz minimalnego.

Rysunek 36. Wykres zależności sprawności obiegu od przyjętej wartości ciśnienia górnego przy tpar=115°C

Na kolejnym rysuneku (rys. 37) przedstawiono zależność pomiędzy sprawnością termiczną obiegu a przyjętą wartością ciśnienia górnego, przy stałej wartości temperatury pary na wlocie do turbiny wynoszącej T_{par}=135°C. Z danych pokazanych na tym wykresie wynika, że wraz ze wzrostem ciśnienia pary na wlocie do turbiny sprawność termiczna wzrasta, a spadek sprawności nastąpił jedynie w przypadku zastosowania w obiegu czynników R1234yf, R227ea oraz R236fa (przy ciśnieniu granicznym względem ciśnienia pośredniego).

Należy też podkreślić, że w przypadku zastosowania w obiegu nadkrytycznym czynnika R41 jak również R125 oraz R143a następuje znaczny wzrost sprawności termicznej wraz ze zwiększeniem ciśnienia górnego.

Rysunek 37. Wykres zależności sprawności obiegu od przyjętej wartości ciśnienia górnego przy T_{Par}=135°C

Analizując dane przedstawione na rysunku 38 można zauważyć, że w przypadku butanu nie nastąpiła zmiana sprawności wynikająca ze wzrostu ciśnienia górnego, a w przypadku czynników R236fa oraz izobutan nastąpił spadek sprawności przy ciśnieniu granicznym względem ciśnienia pośredniego.

8.3.3. Natężenie przepływu czynnika roboczego

Poniżej zamieszczono rysunek 39, na którym przedstawiono wartości natężenia przepływu masowego czynnika roboczego w obiegu roboczym w zależności od przyjętego ciśnienia

górnego przy temperaturze pary na wlocie do turbiny wynoszącej T_{par}=95°C. Z analizy danych pokazanych na tym rysunku można stwierdzić, że jedynie w przypadku czynnika R32 następuje spadek wartości natężenia przepływu czynnika roboczego przy zwiększaniu ciśnienia roboczego. Ponadto zauważyć można, że największy wzrost natężenia przepływu czynnika roboczego obserwuje się w przypadku czynnika R125.

Rysunek 39. Wykres zależności natężenia przepływu czynnika roboczego od przyjętej wartości ciśnienia górnego przy Tpar=95°C

W przypadku, gdy temperatura pary na wlocie do turbiny wynosi T_{par}=115°C można zaobserwować wzrost wartości natężenia przepływu w przypadku wszystkich czynników roboczych.

Rysunek 40. Wykres zależności natężenia przepływu czynnika roboczego od przyjętej wartości ciśnienia górnego przy tpar=115°C

Najwyższe wartości natężenia przepływu czynnika roboczego osiągnięto w przypadku czynnika R125 przy ciśnieniu granicznym, co z pewnością wpływa na wartość pracy pompowania.

W przypadku, gdy temperatura pary na wlocie do turbiny wynosi T_{par}=135°C można zaobserwować wzrost wartości natężenia przepływu w przypadku wszystkich czynników roboczych, co zostało przedstawione na rysunku 41.

Rysunek 41. Wykres zależności natężenia przepływu czynnika roboczego od przyjętej wartości ciśnienia górnego przy Tpar=135°C

Najwyższa wartość masowego strumienia przepływającego czynnika została osiągnięta dla substancji R125 przy założeniu granicznego ciśnienia górnego.

W przypadku, gdy temperatura pary na wlocie do turbiny wynosiła T_{par}=155°C, jedynie w przypadku butanu nie nastąpiła istotna zmiana wartości natężenia przepływu podczas zwiększania ciśnienia górnego, co zostało przedstawione na rysunku 42. Największe wartości masowego natężenia przepływu zostały osiągnięte w przypadku zastosowania czynnika R125 jako płynu roboczego w obiegu nadkrytycznym.

Rysunek 42. Wykres zależności natężenia przepływu czynnika roboczego od przyjętej wartości ciśnienia górnego przy tpar=155°C

8.3.4. Moc przetłaczania

Na rysunkach 43 i 44 przedstawiono wykres zależności mocy przetłaczaniaw funkcji ciśnienia górnego przy temperaturze pary na wlocie do turbiny. Analizując te wykresy można zauważyć, że wzrost ciśnienia górnego powoduje wzrost mocy pompowania. Najwyższe wartości mocy pompowania osiągnięto przy najwyższym ciśnieniu (granicznym) z czynnikiem R41 oraz R125 jako płynem roboczym.

Rysunek 43. Wykres zależności pracy przetłaczania w funkcji ciśnienia górnego przy tpar=95°C

Rysunek 44. Wykres zależności mocy przetłaczania w funkcji ciśnienia górnego przy Tpar=115°C

Z analizy wyników obliczeń mocy przetłaczania w funkcji ciśnienia górnego przedstawionych na rysunku 44, który przedstawia wartościtej mocy dla temperatury pary na wlocie do turbiny wynoszącej T_{par}=135°C, można zauważyć, że w przypadku wszystkich czynników wraz ze wzrostem ciśnienia górnego następuje wzrost mocy

niezbędnej do zasilenia pompy obiegowej. Najwyższe wartości mocy przetłaczania osiągnięto przy ciśnieniu granicznym w przypadku czynników R41 oraz R125, przy czym są to wyniki znacznie odbiegające od tych osiągniętych przy pozostałych czynnikach.

Rysunek 45. Zależności mocy przetłaczaniaw funkcji ciśnienia górnego przy tpar=135°C

Na rysunku 46, z kolei, przedstawiono wykres zależności mocy przetłaczania od przyjętego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej T_{par}=155°C. Analizując ten wykres można zauważyć, że w przypadku wszystkich czynników wraz ze wzrostem ciśnienia górnego nastąpił wzrost mocy potrzebnej do napędu pompy obiegowej. Największy wzrost przy tej temperaturze nastąpił w przypadku obiegu z czynnikiem R125 w całym zakresie zakładanych ciśnień, natomiast najmniejszy w przypadku zastosowania butanu.

Rysunek 46. Wykres zależności pracy przetłaczania w funkcji ciśnienia górnego przy tpar=155°C

8.4. Analiza siłowni z ORC z obiegiem podkrytycznym

W podrozdziale 8.4 przedstawiono graficzną prezentację wyników obliczeń wielkości charakterystycznych uzyskanych dla siłowni z podkrytycznym obiegiem Clausiusa-Rankine'a. Wielkości te stanowić będą poziom odniesienia w ocenie zasadności zastosowania obiegu nadkrytycznego. Wszystkie wyniki obliczeń dla siłowni z obiegiem podkrytycznym zestawiono w załączniku 5.

Na rysunku 47 przedstawiono wykres najwyższych wartości sprawności obiegów podkrytycznych osiągniętych dla wszystkich rozpatrywanych czynników roboczych, natomiast na rysunku 48 moce obiegów. Jak można zauważyć najwyższe wartości sprawności termicznej i mocy osiągnięto przy zastosowaniu amoniaku przy temperaturze pary na wlocie do turbiny wynoszącej T_{par}=132°C (załącznik 5), natomiast najniższe dla czynnika R41 przy temperaturze T_{par}=44°C (załącznik 5).

Rysunek 47. Maksymalne sprawności termiczne siłowni ORC z różnymi czynnikami roboczymi pracującymi w obiegu podkrytycznym

Rysunek 48. Maksymalne moce siłowni z obiegiem podkrytycznym

Na rysunku 49 przedstawiono wykres maksymalnych wartości mocy przetłaczania czynnika roboczego w obiegu dla wszystkich rozpatrywanych czynnikach roboczych.

Rysunek 49. Maksymalne prace przetłaczania czynnika roboczego wsiłowni z obiegiem podkrytycznym

Jak można zauważyć najwyższe wartości mocy przetłaczania niezbędne sąw przypadku zastosowaniu propylenu jako płynu roboczego, przy temperaturze pary na wlocie do turbiny wynoszącej T_{par}=91°C (załącznik 5), natomiast najniższymi mocami przetłaczania charakteryzuje się siłownia podkrytyczna zczynnikiem R236fa przy temperaturze T_{par}=121°C (załącznik 5).

Na rysunku 50 przedstawiono wykres maksymalnych wartości natężenia przepływu czynnika roboczego osiągniętych dla wszystkich rozpatrywanych czynników roboczych zastosowanych w siłowniach podkrytycznych.

Rysunek 50. Maksymalne natężenie przepływu czynnika roboczego w siłowni z obiegiem podkrytycznym

Jak można zauważyć najwyższą wartość masowego natężenia przepływu czynnika roboczego osiągnięto przy zastosowaniu czynnika R125 przy temperaturze pary na wlocie do turbiny wynoszącej T_{par}=66°C (załącznik 5), natomiast najniższą wartością strumienia

masowego przepływu charakteryzuje się siłownia z zastosowaniem amoniaku (przy temperaturze T_{par}=132°C, (załącznik 5).

W tabeli 13 przedstawiono zestawienie maksymalnych wartości parametrów pracy siłowni podkrytycznej dla założonych temperatur pary na wlocie do turbiny.

		t _{par}	ṁn	Nt	Np	Ncr	η	η
Nr	czynnik	[°C]	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]
1	R41	44	11,56	141,48	33,17	108,31	0,04308	4,31
2	R125	66	21,94	252,94	37,95	214,98	0,08551	8,55
3	R143a	72	14,84	287,46	36,80	250,66	0,09970	9,97
4	R2	78	8,44	350,09	34,36	315,73	0,12559	12,56
5	Propylen	91	6,69	383,64	43,27	340,37	0,13539	13,54
6	R1234yf	92	17,08	344,00	38,33	305,67	0,12159	12,16
7	R134a	101	12,41	399,87	34,13	365,74	0,14548	14,55
8	R227ea	100	19,64	355,83	32,60	323,23	0,12857	12,86
9	R161	102	6,43	437,21	36,19	401,02	0,15952	15,95
10	R152a	113	7,63	463,37	32,56	430,81	0,17136	17,14
11	RC318	113	18,62	383,88	29,04	354,83	0,14114	14,11
12	R236fa	121	14,52	423,43	28,45	394,98	0,15711	15,71
13	Amoniak	132	1,68	624,58	28,39	596,19	0,23715	23,71
14	Izobutan	131	6,30	474,02	34,76	439,26	0,17472	17,47
15	Butan	148	5,47	520,88	31,57	489,31	0,19463	19,46

Tabela 13. Zestawienie maksymalnych wartości parametrów pracy siłowni podkrytycznej

8.5. Amoniak w obiegu nadkrytycznym

W niniejszym podpunkcie przedstawiono wyniki obliczeń efektywności pracy siłowni ORC z amoniakiem jako czynnikiem roboczym. Parametry tego płynu nie dają możliwości wykonania analizy obiegu nadkrytycznego ze spełnieniem założeń początkowych przedstawionych w pkt. 6.1. Ponieważ wyniki dla obiegu podkrytycznego z tym czynnikiem były najkorzystniejsze w porównaniu do innych płynów, wykonano obliczenia wielkości charakterystycznych dla nieco wyższych parametrów źródła ciepła (innych danych początkowych), a zostały one tak dobrane aby można było wykonać analizę zarówno dla obiegu podkrytycznego jak i nadkrytycznego (właściwości amoniaku dla tego wariantu podano w tabeli 14). Parametry termodynamiczne amoniaku w obiegu nadkrytycznego dobrano w taki sposób by uzyskać minimalną temperaturę pary na wlocie do turbiny, przy której amoniak osiągnąłby ciśnienie nadkrytyczne. W takim przypadku wariant ten spełnia założenia zarówno wariantu z ciśnieniem minimalnym jak i z ciśnieniem granicznym.

Na rysunkach 51 – 54 przedstawiono wartości mocy i sprawności obiegu, mocy pompowania oraz natężenia przepływu czynnika roboczego i jest to porównanie

pomiędzy obiegiem nad- oraz podkrytycznym z wykorzystaniem amoniaku jako czynnikaroboczego.

T _{n1}	[°C]	233,3
$T_{n2} = T_{n3}$	[°C]	30
T _{n4s}	[°C]	32,748
$p_{n1} = p_{n4s}$	[MPa]	11,334
$p_{n2} = p_{n3}$	[MPa]	1,1672
h _{n1}	[kJ/kg]	2002,8
h _{n2}	[kJ/kg]	1629,3
h _{n3}	[kJ/kg]	484,91
h _{n4s}	[kJ/kg]	501,92
S _{n2}	[kJ/kgK]	5,7347
$S_{n3} = S_{n4s}$	[kJ/kgK]	1,9597

Tabela 14. Właściwości termodynamiczne amoniaku dla obiegu nadkrytycznego

Rysunek 51. Porównanie mocy obiegu nadkrytycznego i podkrytycznego z wykorzystaniem amoniaku jako czynnika roboczego

Rysunek 52. Porównanie sprawności obiegu nadkrytycznego i podkrytycznego z wykorzystaniem amoniaku jako czynnika roboczego

Rysunek 53. Porównanie pracy pompowania obiegu nadkrytycznego i podkrytycznego z wykorzystaniem amoniaku jako czynnika roboczego

Rysunek 54. Porównanie natężenia przepływu czynnika roboczego obiegu nadkrytycznego i podkrytycznego z wykorzystaniem amoniaku jako czynnika roboczego

Analizując wyniki obliczeń przedstawione na rysunkach 51 – 54 można zauważyć, że przy zastosowaniu amoniaku jako czynnika roboczego w przypadku obiegu nadkrytycznego następuje wzrost mocy i sprawności obiegu oraz mocy pompy obiegowej, a także spadek wartości natężenia przepływu czynnika roboczego względem wartości uzyskanych dla obiegu podkrytycznego.

8.6. Prace jednostkowe pompy, turbiny i obiegu

Zestawienie wartości prac jednostkowych (odniesionych do jednostki strumienia masy czynnika roboczego w kJ/kg) uzyskanych w nadkrytycznym obiegu Clausiusa-Rankine'a dla wszystkich czynników roboczychw zależności od temperatury pary na wlocie do turbiny i wartości ciśnienia górnego(w postaci tabel) przedstawiono w załączniku 12. Wartości te w postaci wykresów przedstawiono poniżej na rysunkach 55-57.

Na rysunku 55 przedstawiono wykres pracy jednostkowej obiegu uzyskanej przy minimalnym ciśnieniu górnym, na rysunku 56 przy pośredniej wartości ciśnienia górnego, a na rysunku 57 przy granicznym ciśnieniu górnym.

Rysunek 55. Wykres wartości pracy jednostkowej obiegu uzyskanej przy minimalnym ciśnieniu górnym

Rysunek 56. Wykres wartości pracy jednostkowej obiegu uzyskanej przy pośrednim ciśnieniu górnym

SZYMON MOCARSKI: Analiza i ocena termodynamiczna efektywności pracy nisko i średniotemperaturowej siłowni parowej z obiegiem nadkrytycznym

Rysunek 57. Wykres wartości pracy jednostkowej obiegu uzyskanej przy granicznym ciśnieniu górnym

Analizując rysunki 55 - 57 można zauważyć, że najwyższe wartości pracy jednostkowej w nadkrytycznym obiegu Clausiusa-Rankine'a, niezależnie od wartości ciśnienia górnego, uzyskano przy zastosowaniu czynników: butan oraz izobutanu. Porównując wyniki pod kątem zmian względem temperatury pary na wlocie do turbiny można zauważyć, że wzrost tej wartości powoduje wzrost pracy jednostkowej. Z kolei porównując wyniki pod kątem zmian względem ciśnienia górnego można zauważyć, że wzrost ciśnienia górnego nie zawsze korzystnie wpływa na pracę jednostkową obiegu, szczególnie przy wzroście ciśnienia od wartości pośredniej do wartości granicznej. Można to zauważyć analizując wyniki przedstawione na rysunku 58, na którym pokazano zmianę wartości pracy jednostkowej obiegu względem ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej T_{n1} =135°C.

Rysunek 58. Zmiana wartości pracy jednostkowej obiegu względem ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej T_{n1} =135°C

8.7. Potrzeby własne siłowni

Ważnym kryterium w określaniu efektywności pracy siłowni parowej jest ocena potrzeb własnych siłowni, których główną składową jest praca przetłaczania. Z dotychczasowych rozważań wynika, że w nadkrytycznym obiegu Clausiusa-Rankine'a możliwe jest występowanie stosunkowo wysokich ciśnień roboczych, co pociąga za sobą wzrost mocy niezbędnej do napędu pompy obiegowej. Potrzeby własne siłowni w takim przypadku także ulegają znacznemu wzrostowi. W tabeli 15 przedstawiono wartości potrzeb własnych siłowni parowej dla wszystkich możliwych do zrealizowania wariantów siłowni. Potrzeby własne siłowni w tym przypadku zostały zdefiniowane jako stosunek procentowy mocy pompy obiegowej (mocy przetłaczania) do mocy turbiny.

		Potrzeby własne siłowni			
Czynnik	Temperatura pary T _{n1}	[%]			
	[°C]	Ciśnienie minimalne	Ciśnienie pośrednie	Ciśnienie graniczne	
	95	14,15	20,44	29,45	
	115	12,54	20,99	32,65	
R41	135	11,40	22,25	36,12	
	95	11,33	14,78	19,99	
	115	9,91	16,96	26,75	
	135	8,95	23,51	37,41	
R125	155	8,23	33,97	50,32	
	95	10,95	12,64	14,81	
	115	9,35	13,08	18,55	
	135	8,35	14,98	23,90	
R143a	155	7,62	19,43	31,79	
	95	11,36	10,09	8,96	
	115	9,32	9,75	10,19	
	135	8,11	9,75	11,62	
R32	155	7,28	9,99	13,23	
	115	10,16	11,20	12,39	
	135	8,82	11,43	14,97	
Propylen	155	7,94	12,35	18,39	
	115	10,60	11,45	12,48	
R1234yf	135	8,67	12,31	17,09	
	115	8,15	8,53	8,95	
	135	6,89	8,75	11,30	
R134a	155	6,16	9,75	14,74	
	115	7,48	8,61	10,35	
	135	6,52	10,59	15,96	
R227ea	155	5,91	19,76	30,86	
R161	115	9,07	8,38	7,75	
	135	6,92	7,06	7,19	
R152a	155	5,98	7,25	8,79	
	135	6,24	7,83	10,19	
RC318	155	5,61	13,25	20,27	
	135	6,03	6,59	7,33	
R236fa	155	5,22	7,26	10,24	
Izobutan	155	6,07	7,24	9,03	
Butan	155	6,06	6,06	6,08	

Tabela 15. Potrzeby własne siłowni
Analizując wartości zestawione w tabeli 18 (oraz pokazane w formie wykresów w załączniku 11), a także mając na uwadze dotychczasowe rozważania można zauważyć, że przy wysokich wartościach ciśnienia górnego dochodzi do znacznego wzrostu pracy przetłaczania, co pociąga za sobą konieczność zastosowania pompy o większej mocy. Ponieważ moc pompy stanowi główną składową potrzeb własnych siłowni i w przypadku niektórych czynników (np. czynnik R125 przy ciśnieniu granicznym) mogą wynosić nawet 50% mocy uzyskiwanej na turbinie. Mimo, iż nie stwierdzono znaczącego wpływu mocy pompy obiegowej na sprawność siłowni, a jest to spowodowane tym, żeprzy wyższych ciśnieniach roboczych na ogół obserwuje się wzrost mocy turbiny, to może być to istotne z punktu widzenia kosztów inwestycyjnychi kosztów związanych z eksploatacją i serwisowaniem tak dużych urządzeń pompujących.

8.8. Wpływ temperatury skraplania

Ważnym aspektem mogącym mieć wpływ na efektywność pracy (moc oraz sprawność) siłowni ORC z obiegiem nadkrytycznym jest temperatura skraplania czynnika roboczego. W dotychczasowych rozważaniach zbadano możliwości realizacji nadkrytycznego obiegu Clausiusa- Rankine'a przy założeniu stałej temperatury skraplania wynoszącej $t_{n2}=t_{n3}=30$ °C i na tej podstawie wybrano najkorzystniejszy wariant obiegu dla każdego z rozpatrywanych czynników roboczych. Wybrane, najkorzystniejsze warianty realizacji obiegu Clausiusa-Rankine'a przy temperaturze skraplania wynoszącej $T_{n2}=T_{n3}=30$ °C przedstawiono w tabeli 16.

Lp	Czynnik	Temperatura pary na wlocie do turbiny (T _{n1})	Ciśnienie górne	
		[°C]		
1	R41	135	graniczne	
2	R125	155	graniczne	
3	R143a	155	graniczne	
4	R32	155	graniczne	
5	Propylen	155	graniczne	
6	R1234yf	135	pośrednie	
7	R134a	155	graniczne	
8	R227ea	155	graniczne	
9	R161	115	minimalne	
10	R152a	155	graniczne	
11	RC318	155	graniczne	
12	R236fa	155	pośrednie	
13	Izobutan	155	pośrednie	
14	Butan	155	minimalne	

Tabela 16. Warianty realizacji nadkrytycznego obiegu Clausiusa-Rankine'a wybrane jako poziom odniesienia przy analizie wpływu temperatury skraplania

Warianty przedstawione w tabeli 16 posłużyły jako poziom odniesieniaprzy analizie wpływu temperatury skraplania na efektywność pracy siłowni ORC z nadkrytycznym obiegiem Clausiusa-Rankine'a, która polegała na wykonaniu dodatkowych obliczeń mocy oraz sprawności siłowni przy takich samych założeniach jak te dla wariantów przedstawionych w tabeli 12. Jedynym założeniem, które zostało zmienione jest temperatura skraplania $t_{n2}=t_{n3}$, która w tym przypadku będzie wartością zmienną, zawartą w przedziale od 5 do 30 °C, przy $\Delta t=5$. W ten sposób zbadana została zależność mocy i sprawności od temperatury skraplania w nadkrytycznym obiegu Clausiusa-Rankine'a.

Wyznaczanie właściwości termodynamicznych czynników roboczych oraz obliczenia zostały wykonane analogicznie jak w przypadku wariantów przy stałej temperaturze skraplania tj. według metodyki podanej w rozdziale 7.

Właściwości termodynamiczne czynników roboczych dla wszystkich czynników roboczych w wariancie ze zmienną temperaturą skraplania podano w załączniku 6.

Po przeprowadzeniu obliczeń uzyskano wyniki przedstawione w postaci tabel w załączniku 13.

Analizując wyniki zestawione w tabeli w załączniku 13 można zauważyć, że zmniejszanie temperatury skraplania powoduje poprawę efektywności pracy siłowni dla wszystkich czynników roboczych. Wraz ze spadkiem temperatury skraplania maleje strumień czynnika roboczego ṁ_n, co przy stałej wartości ciśnienia górnego powoduje spadek mocy przetłaczania. Obniżenie temperatury skraplania powoduje również wzrost mocy turbiny, co w połączeniu ze spadkiem mocy pompy obiegowej powoduje ogólny wzrost mocy obiegu, w konsekwencji czego wzrasta także sprawność ogólna siłowni. Na rysunku 59 przedstawiono w formie wykresuzależność sprawności termicznej siłowni ORC od temperatury skraplania czynnika roboczego.

8.9. Optymalna wartość ciśnienia górnego

W niniejszym rozdziale przedstawiono szczegółówą analizę wpływu ciśnienia górnego na efektywność pracy siłowni ORC pracującej w oparciu o nadkrytyczny obieg Clausiusa-Rankine'a. Analiza ta ma na celu dokładniejsze zbadanie oraz wykazanie słuszności postawionej w pracy tezy. Dodatkowe obliczenia przedstawione w tym podrozdziale obejmują przypadki, dla których wcześniejsza analiza wykazała, iż efektywność pracy siłowni była najlepsza przy ciśnieniu górnym innym niż graniczne i będzie polegała na wykonaniu dodatkowych obliczeń dla dwu dodatkowych wartości ciśnienia górnego pośredniego p_{śr1} oraz p_{śr2}. Wykonanie dodatkowych obliczeń dla wartości ciśnień pośrednich pozwoliło w przybliżony, aczkolwiek, w przekonaniu autora, wystarczający sposób wyznaczyć optymalną wartość ciśnienia górnego. Wartości ciśnienia p_{śr1} oraz p_{śr2} zostały wyznaczone analogicznie jak w przypadku wartości ciśnienia pośredniegopśr tj. jako średnia arytmetyczna zakładanych ciśnień sąsiednich. Wartość ciśnienia p_{śr1} wyznaczono jako średnia arytmetyczna pomiędzy ciśnieniem minimalnymp_{min} oraz ciśnieniem pośrednim p_{śr}, natomiast wartość ciśnienia p_{śr2} wyznaczono jako średnia arytmetyczna pomiędzy ciśnieniem pośrednim pśr oraz ciśnieniem granicznym pgr.

Czynnik	temperatura pary	ciśnienie górne
D1224.f	115°C	pośrednie (p _{śr})
К1234уі	135°C	pośrednie (p₅r)
R227ea	135°C	pośrednie (p₅r)
D2266	135°C	pośrednie (p₅r)
KZ3010	155°C	pośrednie (p₅r)
Izobutan	155°C	pośrednie (p₅r)
Butan	155°C	minimalne (p _{min})

Poniżej w tabeli 17przedstawiono przypadki objęte wspomnianą analizą.

Tabela 17. Przypadki, w których uzyskano najlepsze parametry pracy siłowni przy ciśnieniu innym niż graniczne

Analizując tabelę 11 można zauważyć, że wszystkie prezentowane czynniki należą do grupy czynników suchych. W przypadku czynników mokrych wszystkie warianty obliczeń wskazały, że najkorzystniejsze parametry pracy siłowni w nadkrytycznym obiegu Clausiusa-Rankine'a uzyskuje się przy maksymalnym rozważanym ciśnieniu górnym pgr.

W tabeli 18 podano wartości dodatkowych ciśnień pośrednich, w oparciu o które dokonywano dodatkowych obliczeń.

Czynnik	temperatura pary	p śr1	Pśr2	
	°C	MPa	MPa	
R1234yf	115	4,15225	4,3362	
	135	4,7333	6,0793	
R227ea	135	3,72615	5,3264	
R236fa	135	3,3034	3,50815	
	155	3,7565	4,8675	
Izobutan	155	3,90915	4,4675	
Butan	155	3,7984	3,8012	

Tabela 18. Dodatkowe wartości ciśnienia górnego

Obliczenia wykonywano analogicznie jak w przypadku podstawowej analizy w oparciu o model matematyczny podany w rozdziale 7. Poniżej w tabeli 19 przedstawiono wyniki mocy i sprawności uzyskane dla wybranych wariantów.

		, , ,			<u> </u>	
nr	czynnik	temperatura źródła ciepła	ciśnienie górne	t _{par}	N _{cr}	η
			[MPa]	[°C]	[kW]	[%]
1	R1234yf	120	p _{mn}	115	359,16	14,29
			p _{śr1}	115	359,71	14,31
			p _{śr}	115	359,55	14,30
			p _{śr2}	115	359,00	14,28
			p _{gr}	115	357,29	14,21
2	R1234yf	140	p _{mn}	135	372,25	14,81
			p _{śr1}	135	390,93	15,55
			p _{śr}	135	399,48	15,89
			p _{śr2}	135	399,41	15,89
			p _{gr}	135	395,54	15,73
3	R227ea	140	p _{mn}	135	338,06	13,45
			p _{śr1}	135	369,70	14,71
			p _{śr}	135	384,53	15,30
			p _{śr2}	135	385,36	15,33
			p _{gr}	135	383,51	15,25
4	R236fa	140	p _{mn}	135	417,52	16,61
			p _{śr1}	135	419,17	16,67
			p _{śr}	135	420,25	16,72
			p _{śr2}	135	420,59	16,73
			p _{gr}	135	418,91	16,66
5	R236fa	160	p _{mn}	155	420,99	16,75
			p _{śr1}	155	438,04	17,42
			p _{śr}	155	448,12	17,82
			p _{śr2}	155	448,89	17,86
			p _{gr}	155	443,62	17,65
6	Izobutan	160	p _{mn}	155	464,31	18,47
			p _{śr1}	155	472,43	18,79
			p _{śr}	155	477,61	19,00
			p _{śr2}	155	479,11	19,06
			p _{gr}	155	474,64	18,88
7	Butan	160	p _{mn}	155	501,64	19,95
			p _{śr1}	155	501,52	19,95
			Pśr	155	501,61	19,95
			p _{śr2}	155	501,40	19,94
			p _{gr}	155	501,44	19,95

 Tabela 19. Wyniki obliczeń mocy i sprawności z uwzględnieniem dodatkowych wariantów ciśnienia górnego

 nr
 czynnik

 temperatura źródła cienła
 ciśnienie górne

 tarz
 Naz

Dodatkowo w celu lepszego zobrazowania, oraz z racji tego, iż analiza tego aspektu jest wysoce istotna z punktu widzenia dowodzenia postawionej w pracy tezy, poniżej na rysunku 60 przedstawiono wyniki sprawności w postaci wykresu.

Rysunek 60. Wykres sprawności siłowni w zależności od przyjętej wartości ciśnienia górnego

Z racji tego, iż rozbieżność wartości sprawności pomiędzy poszczególnymi wariantami jest dość duża a w niektórych przypadkach różnica sprawności spowodowana zmianą ciśnienia górnego niewielka, w załączniku 14 przedstawiono zmiany sprawności dla każdego przypadku z osobna.

Analiza dodatkowych przypadków wartości ciśnienia górnego pozwoliła zwiększyć dokładność oceny wpływu wartości ciśnienia górnego na efektywność pracy siłowni parowej pracującej w oparciu o nadkrytyczny obieg Clausiusa-Rankine'a.

Analiza wykresów przedstawionych na rysunkach w załączniku 14 pozwala zauważyć, że optymalna wartość ciśnienia górnego nie zawsze jest wartością maksymalną. Wpływ ciśnienia górnego na sprawność siłowni jest różny dla różnych czynników roboczych i zmienia się w zależności od temperatury pary na wlocie do turbiny. Dla przykładu, w przypadku czynnika R1234yf przy temperaturze pary na wlocie do turbiny wynoszącej 115°C maksymalną wartość sprawności uzyskano przy ciśnieniu pśr1, a więc bardziej zbliżonym do wartości minimalnej (pmin), a dla tego samego czynnika ale przy temperaturze pary wynoszącej 140°C wartość maksymalną sprawności uzyskano przy ciśnieniu póśrednim (pśr). Dla większości przypadków maksymalną sprawność uzyskano przy ciśnieniu pśr2 a więc bardziej zbliżonym do wartości granicznej (pgr). Wyjątkiem jest Butan, w którego przypadku najwyższą sprawność uzyskano przy ciśnieniu minimalnym pmin, jednak jak pokazuje rysunek Z.101. (patrz załącznik 14) wpływ tego ciśnienia na sprawność siłowni jest znikomy.

9. ANALIZA EGZERGETYCZNA

Zasadę sporządzania bilansu egzegetycznego dla stanu ustalonego, układu otwartego i niereagującego pokazano w pracach [16, 107] natomiast na rysunku 61 przedstawiono w sposób graficzny strumienie egzergii.

Rysunek 61. Schemat strumieni egzergii dla układu otwartego w stanie ustalonym

Dla układu przedstawionego na rys. 61 równanie bilansu egzergii można zapisać w postaci:

$$\sum_{j=0}^{n} \dot{m}_{j} \cdot b_{i,j} = \sum_{j=0}^{n} \dot{m}_{j} \cdot b_{o,j} + N + \Delta \dot{B}_{Z} + \delta \dot{B}_{I} + \delta \dot{B}_{E} + \delta \dot{B}_{Q}$$
(9.1)

gdzie:

b_i egzergia właściwa czynnika roboczego doprowadzanego do układu

 \mathbf{b}_{e} egzergia właściwa czynnika roboczego odprowadzanego z układu

N moc (elektryczna lub mechaniczna)

 $\Delta \dot{B}_{Z}~~$ zmiana strumienia egzergii zewnętrznego źródła ciepła działającego na osłonie kontrolnej

 $\delta \dot{B}_{I}$ strumień wewnętrznej straty egzergii spowodowanej przemianami nieodwracalnymi przebiegającymi wewnątrz osłony kontrolnej układu

 $\delta \dot{B}_{_{\rm E}}~$ strumień zewnętrznej straty egzergii wynikającej z niewykorzystania produktu odpadowego

 $\delta\dot{B}_{0}$ strata wynikająca z wymiany ciepła w warunkach skończonej różnicy temperatur.

Analiza niedoskonałości termodynamicznej niskotemperaturowej siłowni nadkrytycznej na podstawie strat egzergii możliwa jest, na podstawie oceny strat zachodzących w poszczególnych elementach składowych instalacji siłowni. Na rysunku 62 przedstawiono obieg nadkrytyczny z czynnikiem R227ea na wykresie o współrzędnych entalpia, egzergia.

Rysunek 62. Obieg nadkrytyczny z czynnikiem R227ea na wykresie entalpia, egzergia

Analizy egzergetycznej można dokonać traktując każdy element instalacji jako układ otwarty, dlatego poniżej w rozdziałach 9.1-9.4 przedstawiono zależności niezbędne do przeprowadzenia takiej analizy dla elementów siłowni: turbiny, skraplacza, wymiennika nadkrytycznego i pompy.

9.1. Strumień strat egzergii w turbinie

Teoretycznie przemiana rozprężania w turbinie zachodzi izentropowo. Obrazuje tę przemianę krzywa n1-n2s na rysunku 63. Rzeczywistą przemianę rozprężania obrazuje natomiast krzywa n1-n2. W przypadku klasycznych turbin parowych wyróżnia się trzy rodzaje strat w turbogeneratorze: wynikające ze sprawności wewnętrznej turbiny (η_i), związane ze sprawnością mechaniczną turbiny (η_m) oraz straty związane ze sprawnością mechaniczną turbiny (η_m) oraz straty związane ze sprawnością generatora (η_g). Tylko sprawność wewnętrzna turbiny wpływa na stan termodynamiczny czynnika roboczego. W niniejszej pracy przyjęto, że turbozespół stosowany w siłowni jest jednostką, w której turbina i generator prądu zamknięte są we wspólnej obudowie [86] (w celu uzyskania absolutnej szczelności układu). W takim przypadku generator chłodzony jest parą wylotową z turbiny czynnika roboczego. W związku z powyższym przyjęto jedną (łączną) sprawność turbogeneratora (η_t). Przyjęto także, że straty egzergii wynikające z tej sprawności zaliczone zostaną do strat wewnętrznych (wpływających na stan termodynamiczny czynnika roboczego).

Rysunek 63. Przemiany rozprężania w turbinie w układzie b, h

Bilans strumienia egzergii, jeśli osłona bilansowa obejmuje turbinę będzie następujący:

$$\dot{B}_{n1} = \dot{B}_{n2} + N_{t,el} + \delta \dot{B}_{lt}$$
 (9.2)

gdzie $\delta \dot{B}_{It}$ to strumień wewnętrznej straty egzergii przemiany w turbinie:

$$\delta \dot{B}_{It} = \dot{B}_{n2} - \dot{B}_{n2s}$$
(9.3)

Jeśli uwzględni się, że zmiana egzergii czynnika termodynamicznego jest zapisana zależnością:

$$\Delta \dot{B}_{t} = \dot{B}_{n1} - \dot{B}_{n2} \tag{9.4}$$

to po odpowiednich przekształceniach $\delta \dot{B}$ można zapisać:

$$\delta \dot{B}_{It} = \Delta \dot{B}_{t} - N_{t,el}$$
(9.5)

lub dla ułatwienia obliczeń można zastosować zależności:

$$\delta \dot{B}_{It} = N_{t,teo} - N_{t,el} = N_t - N_t \eta_t = N_t (1 - \eta_t)$$
(9.6)

9.2. Strumień strat egzergii w skraplaczu

W skraplaczu odbywa się proces przekazywania ciepła od przegrzanej pary czynnika roboczego do medium chłodzącego o parametrach otoczenia. Podczas tej przemiany następuje najpierw schłodzenie pary czynnika (przemiana n2-n2") a następnie skroplenie pary do stanu n3. Przedstawiono to na rysunku 64.

Rysunek 64. Przemiany skraplania czynnika roboczego

Bilans egzergii dla skraplacza można zapisać w postaci:

$$\dot{\mathbf{B}}_{n2} = \dot{\mathbf{B}}_{n3} + \delta \dot{\mathbf{B}}_{Is} + \delta \dot{\mathbf{B}}_{Qs}$$
(9.7)

Ze względu na to, że ciepło odprowadzane jest do otoczenia w powyższym równaniu nie występuje zmiana egzergii otoczenia:

$$\Delta \dot{B}_{Zs} = 0. \tag{9.8}$$

Strumień strat wewnętrznych egzergii $\delta \dot{B}_{1s}$ ma miejsce wtedy gdy uwzględni się nieodwracalność procesu spowodowaną oporami przepływu. W takiej sytuacji proces skraplania odbywa się w warunkach zmiennej temperatury skraplania (przemiana n2s-n3p na rys. 64). W niniejszej pracy przyjęto, że:

$$\delta \dot{B}_{Is} = 0. \tag{9.9}$$

Z zależności 9.7 otrzymuje się zależność umożliwiającą obliczenie strumienia strat egzergii wynikających z nieodwracalności przekazywania ciepła:

$$\delta \dot{B}_{Qs} = \dot{B}_{n2s} - \dot{B}_{n3}$$
 (9.10)

Strata ta może być także wyznaczona z zależności poniżej [16] przy uwzględnieniu, że ciepło jest transportowane do otoczenia:

$$\delta \dot{B}_{Qs} = \left(1 - \frac{T_{ot}}{T_{sm}}\right) \dot{Q}_s$$
(9.11)

jednak z punktu widzenia wykonywania obliczeń zależność (9.10) jest dokładniejsza i wygodniejsza w stosowaniu w związku z problematycznym liczeniem średniej temperatury ochładzania i skraplania czynnika roboczego T_{sm} w zależności (9.11).

9.3. Strumień strat egzergii w pompie

Teoretycznie przemianą porównawczą dla procesu przetłaczania cieczy roboczej w pompie jest przemiana izentropowa, co obrazuje krzywa n3-n4s na rys. 65. Rzeczywistą przemianę obrazuje natomiast krzywa n3-n4.

Rysunek 65. Przemiany sprężania w pompie w układzie b, h

Równanie bilansu strumienia egzergii dla pompy można zapisać w postaci:

$$\dot{B}_{n3} + N_{p,el} = \dot{B}_{n4s} + \delta \dot{B}_{Ip}$$
 (9.12)

przy czym wszystkie straty w pompie zostały uznane za wewnętrzne straty egzergii (wpływające na stan termodynamiczny czynnika roboczego)

$$\delta \dot{B}_{Ip} = N_{p,el} + \left(\dot{B}_{n3} - \dot{B}_{n4s} \right)$$
(9.13)

Przy czym w celu wyliczenia $\delta \dot{B}_{\rm Ip}$ można także stosować zależność 9.14.

$$\delta \dot{B}_{Ip} = N_{p,el} - N_{p,eo} = N_{p,el} - N_{p,el} \cdot \eta_p = N_{p,el} \cdot (1 - \eta_p)$$
(9.14)

9.4. Strumień strat egzergii w nadkrytycznym wymienniku ciepła

Równanie bilansu egzergii dla podgrzewacza można zapisać w postaci:

$$\dot{\mathbf{B}}_{n4} = \dot{\mathbf{B}}_{n1} + \Delta \dot{\mathbf{B}}_{Zwn} + \delta \dot{\mathbf{B}}_{Iwn} + \delta \dot{\mathbf{B}}_{Qwn}$$
(9.15)

Zmiana egzergii nośnika energii w podgrzewaczu:

$$\dot{B}_{Zpre} = -\left(1 - \frac{T_{ot}}{\overline{T}_{wn,z}}\right) \dot{Q}_{wn}.$$
(9.16)

gdzie:

$$\frac{1}{\overline{T}_{wn,z}} = \frac{\ln \frac{T_{z1}}{T_{z2}}}{T_{z1} - T_{z2}}$$
(9.17)

Korzystniej jest skorzystać z zależności 9.18, która jest zależnością wygodniejszą w stosowaniu

$$\Delta \dot{B}_{Zwn} = \dot{B}_{z2} - \dot{B}_{z1}$$
(9.18)

Strumień strat wewnętrznych egzergii $\delta \dot{B}_{Iwn}$ ma miejsce wtedy gdy uwzględni się nieodwracalność procesu spowodowaną oporami przepływu. W takiej sytuacji proces wytwarzania pary przegrzanej odbywa się w warunkach zmiennego ciśnienia (przemiana n4-n1f) na rysunku 66.

Rysunek 66. Przemiany podgrzewania czynnika roboczego

W niniejszej pracy przyjęto, że

$$\delta \dot{B}_{Iwn} = 0. \tag{9.19}$$

Strumienia strat egzergii wynikających z nieodwracalności przekazywania ciepła:

$$\delta \dot{B}_{Qwn} = \left[\left(1 - \frac{T_{ot}}{\overline{T}_{wn,s}} \right) - \left(1 - \frac{T_{ot}}{\overline{T}_{wn,n}} \right) \right] \dot{Q}_{wn}$$
(9.20)

gdzie:

$$\frac{1}{\overline{T}_{wn,n}} = \frac{\ln \frac{T_{n1}}{T_{n4}}}{T_{n1} - T_{n4}}$$
(9.21)

Obliczenia straty egzergii w podgrzewaczu można dokonać z wykorzystaniem zależności

$$\delta \dot{B}_{Qwn} = (\dot{B}_{n4} - \dot{B}_{n1}) - (\dot{B}_{z2} - \dot{B}_{z1})$$
(9.22)

która z punktu widzenia wykonywania obliczeń jest dokładniejsza. Związane jest to z problematycznym liczeniem średniej temperatury podgrzewania czynnika $\overline{T}_{wn,n}$ w zależności (9.20) i $\overline{T}_{wn,z}$ w zależnościach (9.16) i (9.21).

9.5. Sprawność egzergetyczna siłowni, strata wynikające z niewykorzystania użytecznego produktu

Przepływ strumieni egzergii oraz strumienie strat egzergii w poszczególnych elementach układu mogą być przedstawione w sposób graficzny (rys. 67).

Rysunek 67. Przepływ strumieni egzergii w niskotemperaturowej elektrowni nadkrytycznej

Należy mieć na uwadze, że w przypadku rozważania jako nośnika energii dla elektrowni tak zwanego źródła otwartego, pozostaje jeszcze strumień nośnika energii wypływający z wymiennika nadkrytycznego o temperaturze T_{z2} (zazwyczaj większej od T_{ot}), a której wartość zależy, w przypadku elektrowni, od:

- rodzaju czynnika roboczego w siłowni ORC
- temperatury czynnika roboczego na wlocie do turbiny T_{n1}.
- sposobu zagospodarowania nośnika energii "poelektrownianej" w przypadku innych układów (np. elektrociepłowni).

Strumień ten charakteryzuje się określoną wartością egzergii \dot{B}_{z2} . W przypadku, gdy znajdzie się zastosowanie dla tej wody (do procesów technologicznych, suszarniczych, innych) sprawność egzergetyczna takiego układu kogeneracyjnego (elektrociepłowni) może być wyrażona zależnością:

$$\eta_{ex} = \frac{N_{el} + \dot{B}_{z2}}{\dot{B}_{z1}}$$
(9.23)

jednak jest to sytuacja wyidealizowana i bardzo indywidualna. Znacznie bardziej prawdopodobne jest założenie, że w elektrowni nie znajduje się zastosowania dla takiego niskotemperaturowego ciepła. W takim przypadku sprawność egzergetyczną elektrowni ORC należy zapisać zależnością:

$$\eta_{ex} = \frac{N_{el}}{\dot{B}_{z1}}$$
(9.24)

Strumień egzergii unoszonej przez nośnik energii "poelektrowniany" (zgodnie z rys. 67, jeśli w konturze osłony bilansowej zostanie zawarta cała elektrownia) będzie stanowił strumień zewnętrznej straty egzergii wynikającej z niewykorzystania produktu odpadowego $\delta \dot{B}_{\rm E}$

$$\delta \dot{B}_{\rm E} = \dot{B}_{z2} \tag{9.25}$$

Jak wspomniano powyżej wielkość straty $\delta \dot{B}_E$ zależy głównie od rodzaju czynnika i temperatury odparowania T_{n1}, tym samym można jako jedno z kryterium optymalizacji obiegu siłowni parowej ORC przyjąć minimalizację tej straty.

Sprawność termiczną dla obu typów źródeł (otwartego i zamkniętego) można zapisać zależnością (9.26)

$$\eta_{th} = \frac{N_{el}}{\dot{Q}_{dop}}$$
(9.26)

przy czym dla źródeł typu "open" jest ona mało przydatna, gdyż w zależności od parametrów pracy (lub rodzaju czynnika roboczego) strumień energii doprowadzonej do systemu \dot{Q}_{dop} będzie wielkością zmienną. Sprawność tak zdefiniowana pozwala dobrać parametry pracy elektrowni najbardziej sprawnej energetycznie ale niekoniecznie najlepiej wykorzystującej zasób źródła. Dla celów porównawczych efektywność pracy różnych siłowni zostanie obliczona jako sprawność egzergetyczna (9.27).

$$\eta_{ex} = \frac{N_{el}}{\dot{B}_{\dot{z}r\dot{o}d\dot{l}a}}$$
(9.27)

W tym przypadku moc uzyskana w siłowni odnoszona jest do egzergii źródła (przy założeniu, że $T_{s \min} = T_{ot}$) oraz pojawia się strata egzergii niewykorzystanego produktu (dla źródła energii typu otwartego).

W dalszej części pracy na przykładach obliczeniowych zobrazowano powyższy wywód oraz wykazano użyteczność metody analizy egzergetycznej do optymalizacji parametrów pracy siłowni nadkrytycznych zasilanych ze źródeł typu "otwartego".

W analizie egzergetycznej poszczególne zmiany egzergii zostały określone z zależności (9.1), (9.3), (9.5), (9.7), (9.10), (9.11) i (9.12) przy czym:

$$\dot{\mathbf{B}}_{i,j} = \dot{\mathbf{m}}_i \cdot \mathbf{b}_{i,j} \tag{9.28}$$

natomiast wartości egzergii właściwej zostały określone z zależności:

$$b = h - h_{ot} - T_{ot} (s - s_{ot})$$
 (9.29)

z wykorzystaniem programu Refprop 9.1 [81].

Egzergię właściwą wody zasilającej obliczano z zależności

$$b_{o,i} = c_{po,i} \left(T_{o,i} - T_{ot} - T_{ot} \ln \frac{T_{o,i}}{T_{ot}} \right)$$
(9.30)

Poziom odniesienia przyjęty do obliczania egzergii T_{ot}=25°C, p_{ot}=0,1 MPa.

9.6. Wyniki analizy egzergetycznej nadkrytycznego obiegu Clausiusa-Rankine'a

Analizę egzergetyczną przeprowadzono w oparciu o obliczenia wykonane dla dwunastu przypadków, w których uzyskano najwyższe wartości sprawności siłowni przy analizie energetycznej przy założeniu pośredniego ciśnienia górnego. Poniżej w tabeli 20 podano te przypadki.

nr	czynnik	temperatura źródła	Temperatura pary na	ciśnienie górne
		ciepłat _{źr}	wlocie do turbiny t _{n1}	
1	R41	100°C	95°C	pośrednie (p _{śr})
2	R125			
3	R143a			
4	R143a	120°C	115°C	
5	Propylen			
6	R1234yf			
7	R152a	140°C	135°C	
8	R236fa			
9	R143a			
10	Butan	160°C	155°C	
11	Izobutan			
12	R152a			

Tabela 20. przypadki wybrane do analizy egzergetycznej

Pierwszym krokiem było obliczenie wartości egzergiiwłaściwej b czynników roboczych oraz nośnika ciepła w poszczególnych punktach charakterystycznych układu. Wielkości te przedstawiono w tabeli 21.

nr	czynnik	b _{n1}	b _{n2}	b _{n2s}	b _{n3}	bn _{4s}	b _{z1}	b _{z2}
					[kJ/kg]			
1	R41 (100°C)	280,47	244,26	246,11	240,83	247,84	169,0357	13,61712
2	R125 (100°C)	69,411	51,716	52,358	49,987	52,506	169,0357	13,61712
3	R143a (100°C)	95,502	71,283	71,621	68,767	71,784	169,0357	13,61712
4	R143a (120°C)	103,28	71,283	72,378	68,767	72,792	233,7375	54,94465
5	Propylen (120°C)	204,92	140,31	140,69	134,95	142,14	233,7375	54,94465
6	R1234yf (120°C)	69,406	41,28	41,466	38,951	42,149	233,7375	54,94465
7	R152a (140°C)	129,6	67,569	67,602	63,063	67,436	301,3902	108,61
8	R236fa (140°C)	53,561	17,876	18,793	15,519	17,806	301,3902	108,61
9	R143a (140°C)	111,61	71,283	72,865	68,767	74,563	301,3902	108,61
10	Butan (160°C)	145,35	42,113	43,269	36,236	42,414	371,2028	169,0357
11	Izobutan (160°C)	155,12	56,146	59,51	50,813	57,727	371,2028	169,0357
12	R152a (160°C)	140,87	67,569	68,228	63,063	68,326	371,2028	169,0357

Tabela 21. wartości egzergii właściwej w poszczególnych punktach układu

Na podstawie tych wielkości uwzględniając odpowiednie strumienie masowe czynników obliczono odpowiadające im wartości egzergii B, które zestawiono w tabeli 22.

SZYMON MOCARSKI: Analiza i ocena termodynamiczna efektywności pracy nisko i średniotemperaturowej siłowni parowej z obiegiem nadkrytycznym

Tab	Tabela 22. Odpowiadające wartości egzergii B							
nr	czynnik	B _{z1}	B _{z2}	₿ _{n1}	₿ _{n2}	₿ _{n2s}	В _{n3}	₿ _{n4s}
					[kJ/s]			
1	R41 (100°C)	1690,357	136,1712	2460,486	2142,826	2159,056	2112,736	2174,23
2	R125 (100°C)	1690,357	136,1712	1287,057	958,9469	970,8512	926,8868	973,596
3	R143a (100°C)	1690,357	136,1712	1298,918	969,5167	974,1138	935,2967	976,331
4	R143a (120°C)	2337,375	549,4465	1273,461	878,9321	892,4336	847,9094	897,538
5	Propylen (120°C)	2337,375	549,4465	1301,194	890,9359	893,3488	856,9011	902,556
6	R1234yf (120°C)	2337,375	549,4465	1009,054	600,1464	602,8506	566,2864	612,78
7	R152a (140°C)	3013,902	1086,1	979,6572	510,7597	511,0092	476,6985	509,754
8	R236fa (140°C)	3013,902	1086,1	693,2267	231,3646	243,2331	200,8586	230,459
9	R143a (140°C)	3013,902	1086,1	1298,596	829,3861	847,7929	800,1122	867,549
10	Butan (160°C)	3712,028	1690,357	760,2569	220,2731	226,3196	189,5333	221,848
11	Izobutan (160°C)	3712,028	1690,357	835,4328	302,3866	320,5042	273,6646	310,901
12	R152a (160°C)	3712,028	1690,357	989,4038	474,5725	479,201	442,9245	479,889

÷

Na podstawie wielkości podanych w tabeli 39 dokonano obliczeń strat egzergii występujących w poszczególnych punktach charakterystycznych układu i zestawiono je w tabeli 23.

Tabela 23. Obliczone wartości strat egzergii

nr	czynnik	δĖlt	δĖQs	δĖlp	δĖΕ	δĠQwn
				[kJ/s]		
1	R41 (100°C)	16,32	30,09	0,09	13,62	1267,93
2	R125 (100°C)	11,96	32,06	0,02	13,62	1240,72
3	R143a (100°C)	4,47	34,22	0,04	13,62	1231,60
4	R143a (120°C)	13,65	31,02	0,18	54,94	1412,01
5	Propylen (120°C)	2,48	34,03	0,00	54,94	1389,29
6	R1234yf (120°C)	2,85	33,86	0,01	54,94	1391,65
7	R152a (140°C)	0,23	34,06	0,05	108,61	1457,90
8	R236fa (140°C)	11,97	30,51	0,04	108,61	1465,03
9	R143a (140°C)	18,58	29,27	0,05	108,61	1496,76
10	Butan (160°C)	6,00	30,74	0,06	169,04	1483,26
11	Izobutan (160°C)	18,17	28,72	0,03	169,04	1497,14
12	R152a (160°C)	4,57	31,65	0,05	169,04	1512,16

W celu dokładnej analizy prezentowanych w tabeli 23 wielkości, przedstawiono je na rysunkach 68-79 w postaci wykresów kołowych zawierających udziały procentowe poszczególnych elementów bilansu egzergii dla poszczególnych przypadków.

Rysunek 68. Bilans egzergetyczny dla czynnika R41 przy temperaturze źródła tźr=100°C

Rysunek 69. Bilans egzergetyczny dla czynnika R125 przy temperaturze źródła t $_{\text{źr}}$ =100°C

Rysunek 70. Bilans egzergetyczny dla czynnika R143a przy temperaturze źródła tźr=100°C

Rysunek 71. Bilans egzergetyczny dla czynnika R143
a przy temperaturze źródła t $_{\acute{z}r}$ =120°C

Rysunek 72. Bilans egzergetyczny dla czynnika Propylen przy temperaturze źródła tźr=120°C

Rysunek 73. Bilans egzergetyczny dla czynnika R1234yf przy temperaturze źródła tźr=120°C

Rysunek 74. Bilans egzergetyczny dla czynnika R152a przy temperaturze źródła tźr=140°C

Rysunek 76. Bilans egzergetyczny dla czynnika R143a przy temperaturze źródła t_{źr}=140°C

SZYMON MOCARSKI: Analiza i ocena termodynamiczna efektywności pracy nisko i średniotemperaturowej siłowni parowej z obiegiem nadkrytycznym

Rysunek 77.Bilans egzergetyczny dla czynnika Butan przy temperaturze źródła tźr=160°C

Rysunek 78. Bilans egzergetyczny dla czynnika Izobutan przy temperaturze źródła tźr=160°C

Rysunek 79. Bilans egzergetyczny dla czynnika R152a przy temperaturze źródła tźr=160°C

Analizując wyniki obliczeń z zakresu analizy egzergatycznej siłowni pokazane na rysunkach 68 - 79 można zauważyć, że najmniejsze straty egzergii występują w pompie obiegowej $\delta \dot{B}_{lp}$. Straty te dla wszystkich analizowanych przypadków są bliskie lub bardzo bliskie zeru, dlatego można uznać je za pomijalnie małe. Nieco większe straty egzergii generowane są w turbinie $\delta \dot{B}_{lt}$, jednak i w tym przypadku są niewielkie i w żadnym z analizowanych przypadków nie przekroczyły 1% udziału w ogólnym bilansie rozchodu egzergii. Należy nadmienić, iż obie wymienione wcześniej straty są stratami wewnętrznymi egzergii, podobnie jak strata występująca w skraplaczu $\delta \dot{B}_{Qs}$, która oscyluje w granicach od 0,77% dla czynnika izobutan przy tźr=160°C do 2,02% dla czynnika R143a przy tźr=100°C. Kolejna składowa bilansu strat egzergii to strata zewnętrzna związana z niewykorzystaniem użytecznego ciepła odpadowego poprzez oddanie do otoczenia nośnika ciepła o temperaturze wyższej od temperatury otoczenia $\delta \dot{B}_{E}$. Strata ta nie zależy w żaden sposób od rodzaju czynnika roboczego a jedynie od parametrów źródła ciepła. W przypadku rozpatrywanego źródła ciepła wartość tej straty egzergii wzrasta wraz ze wzrostem temperatury źródła ciepła od wartości 8,06% dla temperatury źródła tźr=100°C do wartości 45,54% dla tźr=160°C. Kolejną składową bilansu egzergii dla rozpatrywanych przypadków jest strata występująca w wymienniku nadkrytycznym δB_{Qwm}, która jest odwrotnie proporcjonalna do wartości temperatury źródła ciepła i osiągnęła najwyższą wartość (75,01%) w przypadku czynnika R41 przy tźr=100°C, natomiast wartość najniższą zanotowano w przypadku czynnika butan przy tźr=160°C. Jako potwierdzenie powyższych słów mogą posłużyć rysunki 68 oraz 77, na których przedstawiono zmiany wartości udziałów procentowych poszczególnych składowych bilansu egzergii w obrębie jednego czynnika. Na rysunku 80 przedstawiono owe zmiany dla czynnika R143a w zakresie temperatur źródła ciepła od 100°C do 140°C, natomiast na rysunku 81 dla czynnika R152a w zakresie temperatur źródła ciepła od 140°C do 160°C przy skoku wynoszącym 20°C.

Rysunek 80. Zmiany wartości udziałów procentowych poszczególnych składowych bilansu egzergii dla czynnika R143a

Rysunek 81. Zmiany wartości udziałów procentowych poszczególnych składowych bilansu egzergii dla czynnika R152a

Ostatnią analizowaną składową bilansu egzergii jest moc elektryczna turbiny N_{tel}, której udział procentowy w bilansie egzergii odpowiada, co do wartości, sprawności egzergetycznejn_{ex} rozpatrywanego układu. Wartości sprawności egzergetycznejn_{ex} układu w odniesieniu do odpowiadających wartości sprawności termicznejn_{th}dla wszystkich rozpatrywanych przypadkówprzedstawiono na rysunku 82.

Ponadto w celu wykazania zależności wartości sprawności od temperatury źródła ciepła na rysunku 83 przedstawiono porównanie sprawności egzergetycznej i termocznej dla czynnika R143a.

Rysunek 83. porównanie sprawności egzergetycznej i termicznej dla czynnika R143a

Jak wynika z analizy wielkości pokazanych na rysunku 83 tendencje zmian wartości obu rodzajów sprawności w zależności od zmian temperatury źródła ciepła są różne i w przypadku sprawności egzergetycznej obserwuje się spadek jej wartości wraz ze wzrostem temperatury źródła ciepła, podczas gdy sprawność termiczna wzrasta wraz ze wzrostem temperatury źródła ciepła.

Ponadto na rysunku 84 przedstawiono dodatkowo jaki procent mocy turbiny stanowią straty egzergii w turbinie.

Rysunek 84. Straty egzergii w turbinie w odniesieniu do mocy turbiny

18,00% 75,50% 75,01% 16,00% 75,00% 14,00% 74,50% δBlt 12,00% 74,00% δBQs 10,00% 73,40% ■ δĖlp 73,50% 8,00% Nt el 72,86% 73,00% δBE 6,00% δBQwn 72,50% 4,00% 72,00% 2,00% 0,00% 71,50% R41 R125 R143a

Rysunek 85. Bilans egzergii przy tźr=100°C

Rysunek 86. Bilans egzergii przy tźr=120°C

SZYMON MOCARSKI: Analiza i ocena termodynamiczna efektywności pracy nisko i średniotemperaturowej siłowni parowej z obiegiem nadkrytycznym

Rysunek 87. Bilans egzergii przy tźr=140°C

Rysunek 88. Bilans egzergii przy t_{zr} =160°C

W celu zwiększenia czytelności wykresów wartości strat egzergii w wymienniku nadkrytycznym $\delta \dot{B}_{Qwm}$ umieszczono na pionowej osi znajdującej się z prawej stronie wykresu oraz dodatkowo podano wartości liczbowe.

10. PODSUMOWANIE I WNIOSKI KOŃCOWE

W niniejszej pracy przeprowadzono badania dotyczące analizy wpływu: ciśnienia pary na wlocie do turbiny, temperatury pary świeżej, rodzaju czynnika oraz temperatury skraplania czynnika roboczego na efektywność pracy siłowni nadkrytycznej z czynnikiem niskowrzącym. Jako kryteria oceny efektywności pracy zastosowano: sprawność termiczną i egzergetyczną, moc obiegu, moc pompowania czynnika roboczego oraz natężenie przepływu czynnika roboczego a także prace jednostkowe turbiny, pompy i obiegu. Przeprowadzona analiza termodynamiczna nadkrytycznego obiegu Clausiusa-Rankine'a pozwala stwierdzić, że jego realizacja z wykorzystaniem niskowrzących czynników organicznych jest możliwa.

Mając na uwadze tezę pracy, która brzmi:

"Dla obiegu nadkrytycznego, realizowanego w określonych warunkach doprowadzania i wyprowadzania ciepła, istnieje ciśnienie pary świeżej, przy którym efektywność pracy siłowni jest najwyższa", w pierwszej kolejności odniesiono się do tego właśnie parametru - ciśnienia pary na wlocie do turbiny.

W przypadku większości czynników roboczych przy realizacji nadkrytycznego obiegu Clausiusa-Rankine'a podczas zwiększania wartości ciśnienia górnego zaobserwowano tendencję wzrostową wszystkich rozpatrywanych parametrów pracy siłowni parowej a wyjątek stanowią warianty obiegów:

- z czynnikami, w przypadku, których obserwuje się wzrost mocy i sprawności jedynie w pewnym zakresie ciśnienia górnego przy stałej temperaturze:
 - R1234yf przy temperaturze t_{par}=115°C,
 - R1234yf, R227ea, R236fa przy temperaturze t_{par}=135°C,
 - R236, Izobutan, przy temperaturze t_{par}=155°C.
- w przypadku których, obserwuje się brak zmiany wszystkich parametrów pracy siłowni parowej bądź zmianę minimalną:
 - butan przy temperaturze t_{par}=155°C.

Ponadto zauważono, iż wartością optymalną ciśnienia górnego, przy którym parametry pracy siłowni parowej są najkorzystniejsze nie zawsze jest wartość graniczna pgr, a więc maksymalna możliwa do uzyskania. Przypadkami takimi są te wskazane w tabeli 17.

Na podstawie powyżej zapisanych wniosków można stwierdzić, że postawiona w pracy teza została udowodniona.

10.1. Wnioski dotyczące wpływu temperatury pary czynnika roboczego na wlocie do turbiny

Wpływ temperatury pary na wlocie do turbiny na parametry pracy siłowni parowej jest ściśle powiązany z wartością entropii właściwej rozprężania a więc i pośrednio z wartością ciśnienia górnego obiegu.

Moc i sprawność obiegu w większości przypadków rośnie wraz ze wzrostem temperatury pary na wlocie do turbiny, jednak zauważono, że wzrost jest tym większy im odpowiada mu niższa wartość entropii właściwej przy rozprężaniu. W przypadku jednak, gdy procesowi rozprężania w turbnie odpowiada wysoka wartość entropii właściwej, zwiększanie temperatury pary na wlocie do turbiny może spowodować spadek mocy i sprawności obiegu. Największe wartości mocy uzyskano w przypadku czynnika butan przy temperaturze pary na wlocie do turbiny t_{par}=155°C. Natomiast najniższe w przypadku czynnika R41 przy temperaturze t_{par}=95°C

Wartość natężenia przepływu czynnika roboczego spada wraz ze wzrostem temperatury pary na wlocie do turbiny, jednak spadek ten jest tym niższy, im odpowiada mu wyższa wartość entropii właściwej rozprężania. Najwyższa wartość natężenia przepływu została uzyskana dla czynnika R125 przy temperaturze t_{par}=95°C, natomiast najniższa dla propylenu przy temperaturze t_{par}=155°C.

Moc pompowania w nadkrytycznym obiegu Clausiusa-Rankine'a rośnie wraz ze wzrostem temperatury pary na wlocie do turbiny.

10.2. Wnioski dotyczące porównania obiegu nadkrytycznego i podkrytycznego

Porównując parametry pracy siłowni parowej z obiegiem nadkrytycznym względem najkorzystniejszego możliwego do zrealizowania wariantu obiegu podkrytycznego z tym samym czynnikiem roboczym można zauważyć, że:

- sprawność oraz moc obiegu są wyższe w obiegu nadkrytycznym,
- moc pompowania jest wyższa w obiegu nadkrytycznym jedynie przy wyższych wartościach ciśnienia górnego,
- masowe natężenie przepływu czynnika roboczego jest niższe w obiegu podkrytycznym.

Porównując parametry pracy siłowni parowej z obiegiem nadkrytycznym względem obiegu podkrytycznego przy takiej samej wartości temperatury pary na wlocie do turbiny można zauważyć, że bardziej korzystne może okazać się zastosowanie czynnika o wyższej temperaturze krytycznej i realizowanie obiegu podkrytycznego przy zadanej temperaturze źródła ciepła.

Najkorzystniejszym wariantem siłowni parowej okazał się wariant obiegu podkrytycznego z wykorzystaniem amoniaku jako czynnika roboczego. Zarówno sprawność jak i moc obiegu podkrytycznego z wykorzystaniem amoniaku jako czynnika roboczego były wyższe od wszystkich możliwych do zrealizowania wariantów obiegu podkrytycznego. Dlatego też należy stwierdzić, iż dobór odpowiedniego czynnika roboczego stanowi kluczowy aspekt maksymalizacji parametrów pracy siłowni parowej.

10. 3. Wnioski dotyczące stosowania różnych rodzajów czynników

Wykonane obliczenia i analiza wyników pozwala stwierdzić, że realizacja obiegu Clausiusa-Rankine'a przy odpowiednio dobranych parametrach nadkrytycznych pozwala na zastosowanie wewnętrznej regeneracji ciepła również przy wykorzystaniu czynnika mokrego, co w w przypadku obiegu podkrytycznego jest możliwe tylko przy zastosowaniu znacznego przegrzewania pary w wytwornicy pary (a to z kolein niekorzystnie wpływa na efektywność obiegu parowego i nie jest stosowana).

10.4. Wnioski dotyczące zastosowania amoniaku w obiegu nadkrytycznym

amoniaku Zastosowanie w obiegu podkrytycznym pozwoliło uzyskanie na najkorzystniejszych wyników (sprawności i mocy obiegu) ze wszystkich rozważanych wariantów. Aby uzyskać podobne wartości efektywności pracy obiegu nadkrytycznego z tym czynnikiem temperatura pary na wlocie do turbiny musiałaby wynosić aż 233,3°C. Tym samym można stwierdzić, że czynnik ten byłby wskazany dla siłowni zasilanych ciepłem o wyższych parametrach niż te rozpatrywane w pracy. Inną kwestią, kótra nie będzie tutaj dalej rozważana jest to że amoniak ma bardzo specyficzne właściwości chemiczne i użytkowe, przez co nie jest zbyt korzystnym płynem roboczym w siłowniach parowych.

10.5. Uwagi dotyczące doboru parametrów pracy obiegu nadkrytycznego w przypadku niektórych czynników roboczych

W przypadku czynnika R32 przy temperaturze pary wynoszącej t_{par}=95°C, oraz czynnika R161 przy temperaturze t_{par}=115°C, realizacja obiegu nie była możliwa mimo, że temperatura krytyczna jest niższa od zakładanej temperatury pary na wlocie do turbiny. W takim przypadku temperatura pary mimo, iż wyższa od temperatury krytycznej czynnika roboczego jest zbyt niska by czynnik mógł osiągnąć ciśnienie nadkrytyczne, lub procesrozprężaniapary musiałoby przebiegać w obszarze pary mokrej (co nie jest zgodne z założeniami przyjętymi do obliczen). Wnioski te zostały tutaj zapisane aby zwrócić szczególną uwagę na łatwość popełnienia błędu w obliczeniach.W przypadku tych czynników przeprowadzono analizę obiegu przy takich założeniach w celu wykazania wpływu tego typu błędów na efektywność pracy siłowni parowej.

Analizując wyniki dla tych przypadków można zauważyć że:

- wszystkie analizowane parametry obiegu ulegają obniżeniu wraz ze wzrostem wartości ciśnienia górnego w całym jego zakresie,
- sprawność oraz moc obiegu są niższe w stosunku do obiegu podkrytycznego mimo iż temperatura pary na wlocie do turbiny w przypadku obiegu podkrytycznego była dużo niższa,
- moc pompowania jest wyższa w stosunku do obiegu podkrytycznego tylko przy minimalnym ciśnieniu górnym, więc odwrotnie niż w przypadku prawidłowo realizowanego obiegu nadkrytycznego,
- natężenie przepływu jest wyższe w stosunku do obiegu podkrytycznego, także odwrotnie w stosunku do tendencji występujących przy prawidłowo prowadzonym obiegu nadkrytycznym,
- gdy wartość ciśnienia górnego jest zadana i prawidłowa (ciśnienie minimalne) wówczas wartość entropii właściwej rozprężania przyjmuje wartość, przy której rozprężanie zachodzi w obszarze pary mokrej,
- gdy rozprężanie zachodzi w obszarze pary suchej(uzyskuje się to poprzez przyjęcie odpowiedniej wartość entropii właściwej), wówczas ciśnienie górne dobierane względem tej wartości (ciśnienie pośrednie oraz ciśnienia graniczne) jest niższe od krytycznego.

10.6. Pozostałe wnioski

Pozostałe wnioski podzielono na odpowiednie kategorie w zależności od analizy, do której się odnoszą:

Praca jednostkowa obiegu:

Najwyższe wartości pracy jednostkowej (właściwej) nadkrytycznego obiegu Clausiusa-Rankine'a niezależnie od wartości ciśnienia górnego uzyskano dla czynników butan oraz izobutan. Porównując wyniki obliczeń pod kątem zmian względem temperatury pary na wlocie do turbiny można zauważyć, że wzrost jej wartości powoduje wzrost pracy właściwej obiegu. Z kolei porównując wyniki pod kątem zmian względem ciśnienia górnego można zauważyć, że wzrost ciśnienia górnego nie zawsze korzystnie wpływa na pracę jednostkową obiegu, szczególnie przy wzroście ciśnienia od wartości pośredniej do wartości granicznej.

Potrzeby własne siłowni:

Z dotychczasowych rozważań wynika, że w nadkrytycznym obiegu Clausiusa-Rankine'a możliwe jest występowanie wysokich ciśnień roboczych, co pociąga za sobą wzrost mocy niezbędnej do napędu pompy obiegowej. Potrzeby własne siłowni w takim przypadku także ulegają znacznemu wzrostowi. Mając na uwadze dotychczasowe rozważania można zauważyć, że przy wysokich wartościach ciśnienia górnego dochodzi do znacznego wzrostu mocy przetłaczania, co pociąga za sobą konieczność zastosowania pompy o wyższej mocy. Jako, że moc pompy stanowi główną składową potrzeb własnych siłowni dochodzi do wzrostu tych potrzeb, które w przypadku niektórych czynników (np. czynnik R125 przy ciśnieniu granicznym) mogą dochodzić do 50% mocy turbiny. Mimo, iż nie stwierdzono znaczącego wpływu mocy pompy obiegowej na sprawność siłowni (głownie dlatego, że przy wyższych ciśnieniach roboczych na ogół obserwuje się wzrost mocy turbiny), to może być to istotne z punktu widzenia kosztów i problemów związanych z eksploatacją oraz serwisowaniem tak dużych urządzeń pompujących, a to z kolei może mieć niemały wpływ na utrzymanie ruchu instalacji.

Temperatura skraplania:

Przeprowadzona analiza wpływu temperatury skraplania czynnika roboczego wykazała, iż zmniejszanie temperatury skraplania powoduje ogólną poprawę wszystkich parametrów pracy siłowni dla wszystkich czynników roboczych. Wraz ze spadkiem temperatury skraplania maleje strumień czynnika roboczego m'n, co przy stałej wartości ciśnienia górnego powoduje spadek pracy przetłaczania. Obniżenie temperatury skraplania powoduje również wzrost mocy turbiny, co w połączeniu ze spadkiem mocy pompy obiegowej powoduje ogólny wzrost mocy obiegu, w konsekwencji czego wzrasta także sprawność ogólna siłowni.

Analiza egzergetyczna:

Sporządzony bilans egzergetyczny dla wybranych przypadków wykazał, iż najmniejsze straty egzergii występują w pompie obiegowej δB_{lp}. Straty te dla wszystkich analizowanych przypadków bliskie zeru, dlatego można uznać są je za pomijalnie małe. Nieco większe straty egzergii można zaobserwować w turbinie $\delta \dot{B}_{lt}$, jednak i w tym przypadku są bardzo niewielkie i w żadnym z analizowanych przypadków nie przekroczyły 1% ogólnego rozchodu egzergii. Należy nadmienić, iż obie wymienione straty są stratami wewnętrznymi egzergii, podobnie jak strata występująca w skraplaczu $\delta \dot{B}_{Qs}$, która oscyluje w granicach od 0,77% dla czynnika izobutan przy t_{źr}=160°C do 2,02% dla czynnika R143a przy t_{źr}=100°C. Kolejna składowa bilansu egzergii to strata zewnętrzna związana z niewykorzystaniem użytecznego ciepła odpadowego poprzez oddanie do otoczenia nośnika ciepła o temperaturze wyższej od temperatury otoczenia $\delta \dot{B}_{E}$. Strata ta nie zależy w żaden sposób od rodzaju czynnika roboczego a jedynie od parametrów źródła ciepła. W przypadku rozpatrywanego źródła ciepła wartość tej straty egzergii wzrasta wraz ze wzrostem temperatury źródła ciepła od wartości 8,06% dla temperatury źródła tźr=100°C do wartości 45,54% dla tźr=160°C. Kolejną składową bilansu egzergii dla rozpatrywanych przypadków jest strata występująca w wymienniku nadkrytycznym δB_{Qwm}, która jest odwrotnie proporcjonalna do wartości temperatury źródła ciepła i osiągnęła najwyższą wartość (75,01%) w przypadku czynnika

R41 przy t_{zr} =100°C, natomiast wartość najniższą zanotowano w przypadku czynnika butan przy t_{zr} =160°C. Powyższe stwierdzenia i zależności odnoszą się do różnych czynników roboczych jednak potwierdza je analiza efektywności pracy siłowni z czynnikiemR143a dla trzech różnych temperatur źródła ciepła oraz R152a dla dwóch temperatur źródła ciepła.

BIBLIOGRAFIA

- 1 Aghahosseini S., Dincer I.: *Comparative performance analysis of low-temperature Organic Rankine Cycle (ORC) using pure and zeotropic working fluid,* Applied Thermal Engineering 54 (2013) 35e42.
- 2 Akbari N.: Introducing and 3E (energy, exergy, economic) analysis of an integrated transcritical CO2 Rankine cycle, Stirling power cycle and LNG regasification process, Applied Thermal Engineering 140 (2018) 442–454.
- 3 Almatrafi E., Moloney F., Goswami D. Y.: *Performance analysis of solar thermal powered supercritical organic rankine cycle assisted low-temperature multi effect desalination coupled with mechanical vapor compression*, PowerEnergy 2018-7307.
- 4 Angelino G.: Carbon Dioxide Condensation Cycles For Power Production. Journal of Engineering for Power, July 1978.
- 5 Angelino G.: *Perspectives for the Liquid Phase Compression Gas Turbine. Journal of Engineering for Power,* April 1967.
- 6 Archutowski M.: *Obiegi nadkrytyczne siłowni cieplnych z zastosowaniem czynników niskowrzących*, Biuletyn Informacyjny Instytutu Techniki Cieplnej Politechniki Warszawskiej, Nr 33, Warszawa 1972
- 7 Baik Y.J., Kim M., Chang K.C., Kim S.J.: *Power-based performance comparison between carbon dioxide and R125 transcritical cycles for a low-grade heat source*, Applied Energy (88)2011, pp.892-898.
- 8 Baik Y.J., Kim M., Chang K.C., Lee Y.S., Yoon H.K.: *Power enhancement potential of a mixture transcritical cycle for a low-temperature geothermal power generation*, Energy (47)2012, pp. 70-76.
- 9 Baik Y.J., Kim M., K.C., Lee Y.S., Yoon H.K.: A comparative study of power optimization in low-temperature geothermal heat source driven R125 transcritical cycle and HFC organic Rankine cycles, Renewable Energy (54)2013, pp. 78-84.
- 10 BCS, Incorporated, U. S. Department of Energy: Waste Heat Recovery: Technology and Opportunities in U.S. Industry, Industrial Technologies Program 2008.
- 11 Bombarda P., Invernizzi C. M., Pietra C.: *Heat recovery from Diesel engines: A thermodynamic comparison between Kalina and ORC cycles, Applied Thermal Engineering, Volume 30, Issues 2–3, February 2010, Pages 212-219.*
- 12 Borsukiewicz, A., Mocarski, S.: Use of ORC power plant to increase the output of internal combustion engine supplied by biogas from wastewater treatment plant, Instal(2018), nr 3, pages 12-15.
- 13 Borsukiewicz-Gozdur A, Wiśniewski S, Mocarski S., Bańkowski M.: ORC Power plant for electricity production from forest and agriculture biomass, Energy Conversion and Management DOI: 10.1016/j.enconman.2014.04.098.
- 14 Borsukiewicz-Gozdur A., Nowak W.: *Geothermal Power Station with Supercritical Organic Cycle*, Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010.
- 15 Borsukiewicz-Gozdur A.: *Exergy analysis for maximizing power of organic Rankine cycle power plant driven by open type energy source,* Energy (62)2013, pp. 73-81.
- 16 Butrymowicz D., Mikielewicz J., Trela M.: Analiza możliwości zmniejszania niedoskonałości termodynamicznej w obiegach cieplnych maszyn lewobieżnych (ziębiarki, pompy ciepła, skojarzone układy ziębniczo- grzejne), In: Analiza możliwości zmniejszania niedoskonałości termodynamicznej procesów

zaopatrzenia w elektryczność, ciepło chłód w aspekcie zrównoważanego rozwoju kraju. Eds.: Ziębik A., Szargut J., Stanek W., Polska Akademia Nauk, Warszawa, (2006).

- 17 Cayer E., Galanis N., Nesreddine H.: *Parametric study and optimization of a transcritical power cycle using a low temperature source*, Applied Energy (87)2010, pp.1347-1357.
- 18 Chaczykowski M., Organic Rankine Cycle for Residual Heat to Power Conversion in Natural Gas Compressor Station. Part I: Modelling and Optimisation Framework, Arch. Min. Sci. 61 (2016) 259–274.
- 19 Chen H., Goswami D. Y., Rahman M. M., Stefanakos E. K.: A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power, Energy 36 (2011) 549e555.
- 20 Chen H., Goswami D. Y., Rahman M.M., Stefanakos E.K.: *Energetic and exergetic analysis of CO2- and R32-based transcritical Rankine cycles for low-grade heat conversion*, Applied Energy (88)2011, pp.2802-2808.
- 21 Chen H., Goswami D. Y., Stefanakos E.K.: *A review of thermodynamic cycles and working fluids for the conversion of low-grade heat*, Renewable and Sustainable Energy Reviews (14)2010, pp. 3059-3067.
- 22 Chen Y., Lundqvist P., Johansson A., Platell P.: *A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with R123 as working fluid in waste heat recovery*, Applied Thermal Engineering (26)2006, pp. 2142–2147.
- 23 Chys M., van den Broek M., Vanslambrouck B., De Paepe M.: *Potential of zeotropic mixtures as working fluids in organic Rankine cycles*, Energy 44 (2012) 623e632.
- 24 Collado F. J., Guallar J.: *A review of optimized design layouts for solar power tower plants with campo code*, Renewable and Sustainable Energy Reviews Volume 20, April 2013, Pages 142-154.
- 25 Collado F. J., Guallar J.: *Two-stages optimised design of the collector field of solar power tower plants*, Solar Energy, Volume 135, October 2016, Pages 884-896.
- 26 Dai B., Li M., Ma Y.: Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery, Energy 64 (2014) 942e952.
- 27 Dai X., Shi L., An Q., Qian W.: *Influence of alkane working fluid decomposition on supercritical organic Rankine cycle systems*, Energy 153 (2018) 422e430.
- 28 Di Battista D., Mauriello M., Cipollone R.: *Waste heat recovery of an ORC-based power unit in a turbocharged diesel engine propelling a light duty vehicle*, Applied Energy, Volume 152, 15 August 2015, Pages 109-120.
- 29 Dolz V., Novella R., Garcia A., Sanchez J.: *HD Diesel engine equipped with a bottoming Rankine cycle as a waste heat recovery system. Part 1: Study and analysis of the waste heat energy*, Applied Thermal Engineering, Volume 36, April 2012, Pages 269-278.
- 30 Dumont O., Dickes R., De Rosa M., Douglas R., Lemort V.: *Technical and economic* optimization of subcritical, wet expansion and transcritical Organic Rankine Cycle (ORC) systems coupled with a biogas power plant, Energy Conversion and Management 157 (2018) 294–306.
- 31 Dunn P, Reay D. *Heat pipes*. 3rd ed. Pergamon Press; 1982.

32	Enhua W., Zhibin Y., Hongguang Z., Fubin Y.: A regenerative supercritical- subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines. Applied Energy 190 (2017) 574–590.
33	Erdogan A., Colpan C. O.: <i>Performance assessment of shell and tube heat</i> <i>exchanger based subcritical and supercritical organic rankine cycles</i> , THERMAL SCIENCE: Year 2018, Vol. 22, Suppl. 3, pp. S855-S866.
34	Fahrenbruch A. L., Bube R. H.: <i>Fundamentals of solar cells, Photovoltaic Solar Energy Conversion</i> , Academic Press, ISBN 0-12-247680-8 New York 1983.
35	Faltin K.: <i>Entwicklungmoglichkeiten der Gasturbinenprozesse,</i> WissenschaftlicheZeitschrifte der Technischen Hochschule fur Bauwesen Leipzig, pr 4/5, 1952/53
36	Feher E. G.: <i>The supercritical thermodynamic power cycle. International Energy</i> <i>Conversion Conference,</i> 2nd. Miami Beach 1967.
37	Gao H., Liu C., He C., Xu X., Wu S., Li Y.: Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery, Energies (5)2012, pp. 3233-3247.
38	Gasparovic N.: Fluid und Kreissprocesse fur WarmekraftanlagenmitGrossenEinheitenleistungen, BWK, nr 7,1969.
39	Georgiev A.: Simulation and experimental results of a vacuum solar collector system with storage, Energy Conversion and Management 46 (2005) 1423–1442.
40	Gochsztejn D. P.: Werchiwker D. P. <i>ProblemalspolzowanijaNewodianychParow w Energetikie</i> , Tepłoenergetika, nr 1, 1969.
41	Górecki W. et. al. Atlas of geothermal resources of mesozoic formations in the polish lowlands, Kraków 2006.
42	Gu Z., Sato H.: <i>Optimization of cyclic parameters of a supercritical cycle for geothermal power generation</i> , Energy Conversion and Management (42)2001, pp. 1409-1416.
43	Gu Z., Sato H.: <i>Performance of supercritical cycles for geothermal binary design,</i> Energy Conversion and Management (43)2002, pp. 961-971.
44	Gueymard C. A.: The sun's total and spectral irradiance for solar energy applications and solar radiation models, Solar Energy, Volume 76, Issue 4, April 2004, Pages 423-453.
45	Guo T, Wang H., Zhang S.: <i>Comparative analysis of natural and conventional working fluids for use in transcritical Rankine cycle using low-temperature geothermal source</i> , International Journal of Energy Research (35)2011, pp. 530-544.
46	Guo T., Wang H.X., Zheng J.: Comparative analysis of CO2-based transcritical Rankine cycle and HFC245fa-based subcritical organic Rankine cycle using low- temperature geothermal source, Science China Technological Sciences (53)2010, pp. 1638-1946.
47	Hettiarachchi M., Golubovic M., Worek W.M., Ikegami Y.: <i>Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources</i> , Energy (32)2007, pp. 1698-1706.
48	Hou S., Cao S., Yu L., Zhou Y., Wu Y., Zhang FY.: <i>Performance optimization of combined supercritical CO2 recompression cycle and regenerative organic Rankine cycle using zeotropic mixture fluid</i> , Energy Conversion and Management 166 (2018) 187–200.

49	Hou S., Zhou Y., Yu L., Zhang F., Cao S.: <i>Optimization of the combined supercritical</i> <i>CO2 cycle and organic Rankine cycle using zeotropic mixtures for gas turbine</i>
50	waste heat recovery, Energy Conversion and Management 160 (2018) 313–325. Ismail K. A. R., Abogderah M. M.: <i>Performance of a Heat Pipe Solar Collector</i> , J. Sol. Energy Eng 120(1), 51-59 (Feb 01, 1998) (9 pages).
51	Jui-Ching H., Ben-Ran F., Ta-Wei W., Yi C., Yuh-Ren L., Jen-Chieh C.: <i>Design and preliminary results of a 20-kW transcritical organic Rankine cycle with a screw expander for low-grade waste heat recovery</i> , Applied Thermal Engineering 110 (2017) 1120–1127.
52	Kacludis A., Lyons S., Nadav D., Zdankiewicz E.: <i>Waste heat to power (WH2P)</i> applications using supercritical CO ₂ -based power cycle, Power-Gen International 2012 11-13 December 2012 Orlando, FL U.S.A.
53	Kanoglu M., Bolatturk A.: <i>Performance and parametric investigation of a binary geothermal power plant by exergy</i> , Renewable Energy (33)2008, pp. 2366-2374.
54	Karellas S., Schuster A., Leontaritis A.D.: <i>Influence of supercritical ORC parameters on plate heat exchanger design</i> , Applied Thermal Engineering (33-34)2012, pp.70-76.
55	Karellas S., Schuster A.: Supercritical Fluid Parameters in Organic Rankine Cycle Applications, International Journal of Thermodynamics (11)2008, pp. 101-108.
56	Kim Y.M., Kim C.G., Favrat D.: Transcritical or supercritical CO2 cycles using both low- and high-temperature heat sources, Energy (43)2012, pp.402-415.
57	Konstantinos B., Sotirios K.: Exergetic optimization of double stage Organic Rankine Cycle (ORC), Energy 149 (2018) 296e313.
58	Kosowski K., Piwowarski M., Stępień R., Włodarski W.: <i>Design and investigations of the ethanol microturbine</i> , archives of thermodynamics, Vol. 39(2018), No. 2, 41–54.
59	Kravitz B.: US Patent 4,237,864, Focusing solar collector, 1980.
60	Landelle A., Tauveron N., Haberschill P, Revellin R., Colasson S.: Organic Rankine cycle design and performance comparison based on experimental database, Applied Energy 204 (2017) 1172–1187.
61	Landelle A., Tauveron N., Revellin R., Haberschillc P, Colassona S.: <i>Experimental Investigation of a Transcritical Organic Rankine Cycle with Scroll Expander for Low-Temperature Waste Heat Recovery</i> , Energy Procedia 129 (2017) 810–817.
62	Laudyn D.: Pawlik M., Strzelczyk F. <i>Elektrownie</i> , WNT, Warszawa 1997.
63	Lewandowski W. M., Ryms M., Kołoła R., Kubski P., Klugmann-Radziemska E., Ostrowski P.: Poprawa sprawności układów ORC i systemów trigeneracyjnych poprzez zastosowanie różnych termodynamicznych wariantów ich działania, Nafta-gaz nr 9/2010 str. 794-799.
64	Li J., Liu Q., Ge Z., Duan Y., Yang Z.: <i>Thermodynamic performance analyses and optimization of subcritical and transcritical organic Rankine cycles using R1234ze(E) for 100–200 C heat sources</i> , Energy Conversion and Management 149 (2017) 140–154.
65	Li Y-R., Du M-T., Wu C-M., Wu S-Y., Liu C.: <i>Potential of organic Rankine cycle using zeotropic mixtures as working fluids for waste heat recovery</i> , Energy 77 (2014) 509e519.
66	Lia L., Gea Y.T., Luo X., Tassou S.A: <i>Experimental analysis and comparison between</i> CO2 transcritical power cycles and R245fa organic Rankine cycles for low-grade
heat power generations, Applied Thermal Engineering 136 (2018) 708–717.

- 67 Lingfeng S., Gequn S., Hu T., Guangdai H., Tianyu C., Xiaoy L., Daiqiang L.: *Experimental comparison between four CO2-based transcritical Rankine cycle (CTRC) systems for engine waste heat recovery*, Energy Conversion and Management 150 (2017) 159–171.
- 68 Löf G. O. G., Duffie J. A.: *Optimization of Focusing Solar-Collector Design*, J. Eng. Power 85(3), 221-228 (Jul 01, 1963) (8 pages).
- 69 Maizza V., Maizza A.: Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems, Applied Thermal Engineering, Volume 21, Issue 3, 1 February 2001, Pages 381-390.
- 70 Maraver D., Royo J., Lemort V., Quoilin S.: *Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications*, Applied Energy (117) 2014, pp. 11-29.
- 71 Marty F., Serra S., Sochard S., Reneaume J-M.: *Simultaneous optimization of the district heating network topology and the Organic Rankine Cycle sizing of a geothermal plant*, Energy 159 (2018) 1060e1074.
- 72 Mikielewicz D., Mikielewicz J.: *A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP*, Applied Thermal Engineering, (30)2010, pp. 2357-2362.
- 73 Mikielewicz D., Mikielewicz J.: *Analytical method for calculation of heat source temperature drop for the Organic Rankine Cycle application*, Applied Thermal Engineering, (63), 2014, pp. 541–550.
- 74 Min-Hsiung Y., Rong-Hu Y.: *Economic research of the transcritical Rankine cycle systems to recover waste heat from the marine medium-speed diesel engine,* Applied Thermal Engineering 114 (2017) 1343–1354.
- 75 Mocarski S., Borsukiewicz-Gozdur A,: Application of ORC power station to increase electric power of gas compression ignition engine, E3S Web Conf. Volume 13, 2017.
- 76 Moloney F., Almatrafi E., Goswami D. Y.: *Working fluid parametric analysis for recuperative supercritical organic Rankine cycles for medium geothermal reservoir temperatures*, Renewable Energy, Acctepted manuscript.
- 77 Mutuberria A., Pascual J., Guisado M. V., Mallor F.: *Comparison of heliostat field layout design methodologies and impact on power plant efficiency*, Energy Procedia, Volume 69, May 2015, Pages 1360-1370.
- 78 Nami H., Mahmoudi S.M.S., Nemati A.: Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic Rankine cycle (GT-HRSG/SCO2), Applied Thermal Engineering 110 (2017) 1315–1330.
- 79 Nehrebecki L.: *Elektrownie cieplne*, WNT, Warszawa 1974.
- 80 Nemati A., Mohseni R., Yari M.: A comprehensive comparison between CO2 and Ethane as a refrigerant in a two-stage ejector-expansion transcritical refrigeration cycle integrated with an organic Rankine cycle (ORC), The Journal of Supercritical Fluids 133 (2018) 494–502.
- 81 NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 9.1.
- 82 Nowak W., Borsukiewicz-Gozdur A., Wiśniewski S.: *Influence of working fluid evaporation temperature in the near-critical point region on the effectiveness of*

ORC Power plant operations, Archives of Thermodynamics, (33)2012, pp. 77-88. 83 Oguz Arslan, OzgeYetik: ANN based optimization of supercritical ORC-Binary geothermal power plant: Simav case study, Applied Thermal Engineering (31)2011, pp. 3922-3928. 84 Oztop H. F., Bayrak F., Hepbasli A.: Energetic and exergetic aspects of solar air heating (solar collector) systems, Renewable and Sustainable Energy Reviews, Volume 21, May 2013, Pages 59-83. 85 Pan L., Wang H., Shi W.: Performance analysis in near-critical conditions of organic Rankine cycle, Energy (37)2012, pp. 281-286. 86 Patent PL218434 Hermetyczny turbogenerator parowy, elektrownia parowa z hermetycznym turbogeneratorem parowym oraz sposób chłodzenia *hermetycznego turbobogeneratora parowego*, 31.12.2014 WUP 12/2014. 87 Perycz S.: Turbiny parowe i gazowe, Ossolineum, Warszawa 1992. 88 Pethurajan V., Sivan S., Joy G. C.: Issues, comparisons, turbine selections and applications - An overview in organic Rankine cycle, Energy Conversion and Management 166 (2018) 474-488. 89 Pumaneratkul C., Horino T., Yamasaki H., Yamaguchi H.: Exergy analysis of development on supercritical CO2 solar Rankine cycle system with thermally driven pump, Cogent Engineering (2018), 5: 1475440. 90 Radulovic J., Beleno Castaneda N. I.: On the potential of zeotropic mixtures in supercritical ORC powered by geothermal energy source, Energy Conversion and Management 88 (2014) 365–371. 91 Rijpkema J., Munch K., Andersson S. B.: Thermodynamic potential of Rankine and flash cycles for waste heat recovery in a heavy duty Diesel engine, Energy Procedia 129 (2017) 746-753. 92 Roeb M. et al..: Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower, Solar Energy Volume 85, Issue 4, April 2011, Pages 634-644. 93 Sabau A. S., Nejad A. H., Klett J. W., Bejan A., Ekici K.: Novel evaporator architecture with entrance-length crossflow-paths for supercritical Organic Rankine Cycles, International Journal of Heat and Mass Transfer 119 (2018) 208-222. 94 Sadreddini A., Ashjari M. A., Fani M., Mohammadi A.: Thermodynamic analysis of a new cascade ORC and transcritical CO2 cycle to recover energy from medium temperature heat source and liquefied natural gas, Energy Conversion and Management 167 (2018) 9–20. 95 Sanchez C. J. N., da Silva A. K.: Technical and environmental analysis of transcritical Rankine cycles operating with numerous CO2 mixtures, Energy 142 (2018) 180e190. 96 Sarkar J.: Generalized pinch point design method of subcritical-supercritical organic Rankine cycle for maximum heat recovery, Energy 143 (2018) 141e150. 97 Sarmiento C., Cardemil J. M., Díaz A. J., Barraza R.: Parametrized analysis of a carbon dioxide transcritical Rankine cycle driven by solar energy, Applied Thermal Engineering 140 (2018) 580-592. 98 Satanphol K., Pridasawas W., Suphanit B.: A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat

recovery, Energy 123 (2017) 326e339.

99	Saxena A., Varun, El-Sebaii A. A.: A thermodynamic review of solar air heaters, Renewable and Sustainable Energy Reviews 43 (2015) 863.
100	Schabert H. P.: CO_2 – TurbinenimDirekten und IndirektenKreislauf von Kernkraftwerken, BWK, nr 3, 1969.
101	Schuster A., Karellas S., Aumann R.: <i>Efficiency optimization potential in supercritical Organic Rankine Cycles</i> . Energy (35)2010, pp. 1033-1039.
102	Shi L., Shu G., Tian H., Huang G., Li X., Chen T., Li L.: <i>Experimental investigation of a CO2-based Transcritical Rankine Cycle (CTRC) for exhaust gas recovery</i> , Energy 165 (2018) 1149e1159.
103	Shu G., Yu Z., Tian H., Liu P., Xu Z.: <i>Potential of the transcritical Rankine cycle using</i> <i>CO2-based binary zeotropic mixtures for engine's waste heat recovery</i> , Energy Conversion and Management 174 (2018) 668–685.
104	Shu G., Zhao M., Tian H., Wei H., Liang X., Huo Y., Zhu W.: <i>Experimental</i> investigation on thermal OS/ORC (Oil Storage/Organic Rankine Cycle) system for waste heat recovery from diesel engine, Energy 107 (2016) 693-706.
105	Song J., Li X-s., Ren X-d., Gu C-w.: <i>Performance analysis and parametric optimization of supercritical carbon dioxide (S-CO2) cycle with bottoming Organic Rankine Cycle (ORC)</i> , Energy 143 (2018) 406e416.
106	Song J., Song Y., Gu C-w.: Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines, Energy, Volume 82, 15 March 2015, Pages 976-985.
107	Szargut J.: <i>Egzergia. Poradnik obliczania i stosowania</i> . Wydawnictwo Politechniki Śląskiej. Gliwice, 2007.
108	Szargut J.: Termodynamika techniczna, PWN, Kraków 2009
109	Szargut J.: Ziębik A. <i>Podstawy energetyki cieplnej</i> , Wydawnictwo Naukowe PWN, Warszawa 1988.
110	Truchnij AD.: Locev SM. Stacjonarnyeparovye turbiny, Energizdat, Moskva 1981.
111	Vélez F., Chejne F., Antolin G., QuijanoA.: <i>Theoretical analysis of a transcritical power cycle for power generation from waste energy at low temperature heat source</i> , Energy Conversion and Management (60)2012, pp. 188-195.
112	Veloso T. G. C., Sotomonte C. A. R., C. J.R. Coronado M. A.R. Nascimento: <i>Multi-objective optimization and exergetic analysis of a low-grade waste heat recovery ORC application on a Brazilian FPSO</i> , Energy Conversion and Management 174 (2018) 537–551.
113	Vetter C., Wiemer H.J., Kuhn D.: Comparison of sub- and supercritical Organic Rankine Cycles for power generation from low-temperature/low-enthalpy geothermal wells, considering specific net power output and efficiency, Applied Thermal Engineering (51)2013, pp. 871-879.
114	Vidhi R., Goswami D. Y., Stefanakos E. K.: <i>Parametric study of supercritical Rankine cycle and earth-air heatexchanger for low temperature power generation</i> , Energy Procedia 49 (2014) 1228 – 1237.
115	Wang D., Tian R., Zhang Y., Li L., Shi L.: <i>Experimental comparison of the heat transfer of supercritical R134a in a micro-fin tube and a smooth tube</i> , International Journal of Heat and Mass Transfer 129 (2019) 1194–1205.
116	Wang M., Wang J., Zhao Y., Zhao P., Dai Y.: <i>Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors</i> , Applied Thermal Engineering Volume 50, Issue 1, 10

	January 2013, Pages 816-825.
117	Wang T., Gao N., Zhu T.: Investigation on the optimal condensation temperature of supercritical organic Rankine cycle systems considering meteorological
	parameters, Energy Conversion and Management 174 (2018) 54–64.
118	Wang Z.Q., Zhou N.J., Guo J., Wang X.Y.: Fluid selection and parametric
	optimization of organic Rankine cycle using low temperature waste heat, Energy (40)2012, pp. 107-115.
119	Wei M. S., Fang J. L., Ma C. C., Danish S. N.: <i>Waste heat recovery from heavy-duty diesel engine exhaust gases by medium temperature ORC system</i> , Sci. China Technol. Sci. (2011) 54: 2746.
120	White M. T., Sayma A. I.: A preliminary comparison of different turbine
	architectures for a 100 kW supercritical CO2 Rankine cycle turbine, The 6th
	International Supercritical CO2 Power Cycles Symposium March 27 - 29, 2018, Pittsburgh, Pennsylvania.
121	Wiśniewski S., Borsukiewicz-Gozdur A.: The influence of vapor superheating on
	<i>the level of heat regeneration in a subcritical ORC coupled with gas power plant,</i> archives of thermodynamics Vol. 31(2010), No. 3, 185–199.
122	Wu Y., Zhu Y., Yu L.: <i>Thermal and economic performance analysis of zeotropic</i> <i>mixturesfor Organic Rankine Cycles</i> , Applied Thermal Engineering 96 (2016) 57– 63.
123	Xia J., Wang J., Zhang G., Lou J., Zhao P., Dai Y.: Thermo-economic analysis and
	comparative study of transcritical power cycles using CO2-based mixtures as
	working fluids, Applied Thermal Engineering 144 (2018) 31–44.
124	Xia J., Wang J., Zhou K., Zhao P., Dai Y.: Thermodynamic and economic analysis
	and multi-objective optimization of a novel transcritical CO2 Rankine cycle with an ejector driven by low grade heat source, Energy 161 (2018) 337e351.
125	Xu C., Wang Z., Li X., Sun F.: <i>Energy and exergy analysis of solar power tower plants</i> , Applied Thermal Engineering 31 (2011) 3904-3913.
126	Xu J., Liu C.: <i>Effect of the critical temperature of organic fluids on supercritical pressure Organic Rankine Cycles</i> , Energy (63)2013, pp. 109-122.
127	Yang F., Dong X., Zhang H., Wang Z., Yang K., Zhang J., Wang E., Liu H., Zhao G.: Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions, Energy Conversion and Management, Volume 80, April 2014, Pages 243-255.
128	Yang F., Zhang H., Bei C., Song S., Wang E.: <i>Parametric optimization and performance analysis of ORC (organic Rankine cycle) for diesel engine waste heat recovery with a fin-and-tube evaporator</i> , Energy, Volume 91, November 2015, Pages 128-141
129	Yang M-H., Yeh R-H., Hung T-C.: <i>Thermo-economic analysis of the transcritical organic Rankine cycle using R1234yf/R32 mixtures as the working fluids for lower-grade waste heat recovery</i> , Energy 140 (2017) 818e836.
130	Yang M-H.: The performance analysis of the transcritical Rankine cycle using carbon dioxide mixtures as the working fluids for waste heat recovery, Energy Conversion and Management 151 (2017) 86–97.
131	Yu G., Shu G., Tian H., Wei H., Liu L.: <i>Simulation and thermodynamic analysis of a bottoming Organic Rankine Cycle (ORC) of diesel engine (DE)</i> , Energy, Volume 51, 1 March 2013, Pages 281-290.

- 132 Zhang S., Wang H., Guo T.: Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation, Applied Energy (88)2011, pp. 2740-2754.
- 133 Zhang X.R., Yamaguchi H., Fujima K., Enomoto M., Sawada N.: *Theoretical analysis* of a thermodynamic cycle for power and heat production using supercritical carbon dioxide, Energy (32)2007, pp. 591-599.
- Zhang X.R., Yamaguchi H., Uneno D.: *Experimental study on the performance of solar Rankine system using supercritical CO2*, Rnewable Energy (32)2007, pp. 2617-2628.
- 135 Zhang Y., Yao Y., Li Z., Tang G., Wu Y., Wang H, Lu J.: Low-grade heat utilization by supercritical carbon dioxide Rankine cycle: Analysis on the performance of gas heater subjected to heat flux and convective boundary conditions, Energy Conversion and Management 162 (2018) 39–54.
- 136 Zhi L-H., Hu P., Chen L-X., Zhao G.: Multiple parametric analysis, optimization and efficiency prediction of transcritical organic Rankine cycle using trans-1,3,3,3tetrafluoropropene (R1234ze(E)) for low grade waste heat recovery, Energy Conversion and Management 180 (2019) 44–59.

Odnośnikiinternetowe:

- 138 http://www.aqylon.com
- 139 http://www.exergy-orc.com
- 140 http://www.inmis-energy.com
- 141 http://www.turboservice.com.pl
- 142 https://www.italcementi.it/it
- 143 https://www.stelmet.com/
- 144 https://www.turboden.com

SPIS TABEL

TABELA 1. ZESTAWIENIE RODZAJÓW CZYNNIKÓW ROBOCZYCH I UZYSKIWANYCH WARTOŚCI SPRAWN	OŚCI
W SIŁOWNIACH GEOTERMALNYCH (NA PODSTAWIE PRZEGLĄDU LITERATURY TEMATU)	18
TABELA 2. PARAMETRY OKREŚLAJĄCE WPŁYW DANEGO CZYNNIKA ROBOCZEGO NA ŚRODOWISKO	
NATURALNE, PODANE PRZEZ AUTORÓW PRACY [132]	20
TABELA 3. POWIERZCHNIA WYMIANY CIEPŁA PRZY ZASTOSOWANIU RÓŻNYCH CZYNNIKÓW ROBOCZY	CH W
OBIEGU PODKRYTYCZNYM ORAZ NADKRYTYCZNYM [132]	20
TABELA 4. WYBRANE WYNIKI OBLICZEŃ UZYSKANE PRZEZ AUTORÓW PRACY [45]	22
TABELA 5. WYBRANE WYNIKI OBLICZEŃ ZAPREZENTOWANYCH PRZEZ AUTORÓW PRACY [8]	22
TABELA 6. WYNIKI OBLICZEŃ SPRAWNOŚCI SIŁOWNI UZYSKANE PRZEZ AUTORÓW PRACY [55]	23
TABELA 7. WYNIKI OBLICZEŃ UZYSKANE PRZEZ AUTORÓW PRACY [113] (WARTOŚCI OZNACZONE GWI/	AZDKĄ
(*) DOTYCZĄ OBIEGU NADKRYTYCZNEGO)	23
TABELA 8. WYNIKI UZYSKANE PRZEZ AUTORÓW PRACY [132]	24
TABELA 9. WYNIKI OBLICZEŃ UZYSKANE PRZEZ AUTORÓW PRACY [9]	25
TABELA 10. WYNIKI PODANE W PRACY [43]	25
TABELA 11. PODSTAWOWE WŁAŚCIWOŚCI CZYNNIKÓW ROBOCZYCH WYBRANYCH DO	
ANALIZY(OPRACOWANIE WŁASNE NA PODSTAWIE [81])	39
TABELA 12. WYKAZ ROZPATRYWANYCH W PRACY WARIANTÓW REALIZACJI NADKRYTYCZNEGO OBIEG	U C-R
ORAZ MOŻLIWOŚCI ICH REALIZACJI; OZNACZENIA: (+) – MOŻLIWY, (-) – NIE MOŻLIWY DO	
ZREALIZOWANIA	47
TABELA 13. ZESTAWIENIE MAKSYMALNYCH WARTOŚCI PARAMETRÓW PRACY SIŁOWNI PODKRYTYCZN	IEJ.67
TABELA 14. WŁAŚCIWOŚCI TERMODYNAMICZNE AMONIAKU DLA OBIEGU NADKRYTYCZNEGO	68
TABELA 15. POTRZEBY WŁASNE SIŁOWNI	72
TABELA 16. WARIANTY REALIZACJI NADKRYTYCZNEGO OBIEGU CLAUSIUSA-RANKINE'A WYBRANE JAKO	C
POZIOM ODNIESIENIA PRZY ANALIZIE WPŁYWU TEMPERATURY SKRAPLANIA	73
TABELA 17. PRZYPADKI, W KTÓRYCH UZYSKANO NAJLEPSZE PARAMETRY PRACY SIŁOWNI PRZY CIŚNIE	NIU
INNYM NIŻ GRANICZNE	75
TABELA 18. DODATKOWE WARTOŚCI CIŚNIENIA GÓRNEGO	76
TABELA 19. WYNIKI OBLICZEŃ MOCY I SPRAWNOŚCI Z UWZGLĘDNIENIEM DODATKOWYCH WARIANTO	ŚW
CIŚNIENIA GÓRNEGO	76
TABELA 20. PRZYPADKI WYBRANE DO ANALIZY EGZERGETYCZNEJ	88
TABELA 21. WARTOŚCI EGZERGII WŁAŚCIWEJ W POSZCZEGÓLNYCH PUNKTACH UKŁADU	88
TABELA 22. ODPOWIADAJĄCE WARTOŚCI EGZERGII B	89
TABELA 23. OBLICZONE WARTOŚCI STRAT EGZERGII	89

SPIS RYSUNKÓW

RYSUNEK 1. KOGENERACJA W GEOTERMALNEJ SIŁOWNI ORC	9
RYSUNEK 2. WYKORZYSTANIE SPALIN DO ZASILANIA SIŁOWNI ORC	. 10
RYSUNEK 3. RÓŻNE WARIANTY ZASTOSOWANIA SIŁOWNI ORC JAKO OBIEGU WTÓRNEGO	. 11
RYSUNEK 4. PRZYKŁADY ZASTOSOWANIA SIŁOWNI ORC W SUSZARNICTWIE PRZEMYŚLE DRZEWNYM	. 12
RYSUNEK 5. SIŁOWNIA ORC ZAINSTALOWANA W KATEDRZE TECHNIKI CIEPLNEJ ZACHODNIOPOMORSKIEG	GO
UNIWERSYTETU TECHNOLOGICZNEGO W SZCZECINIE [141]	. 14
RYSUNEK 6. CYKL PRZEMIAN TERMODYNAMICZNYCH A) OBIEGU CLAUSIUSA-RANKINEA W PRZYPADKU	
ZASTOSOWANIA CZYNNIKA SUCHEGO (NA PARĘ NASYCONĄ SUCHĄ), B) OBIEGU CLAUSIUSA-	
RANKINEA NA PARĘ MOKRĄ, C) OBIEGU CLAUSIUSA-RANKINEA Z ZASTOSOWANIEM PRZEGRZEWAN	IIA
PARY (W PRZYPADKU ZASTOSOWANIA CZYNNIKA MOKREGO)	. 27
RYSUNEK 7. PODSTAWOWY SCHEMAT SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA-RANKINE	E'A
	. 28
RYSUNEK 8. OBSZAR NADKRYTYCZNY	. 29
RYSUNEK 9.OBIEG FEHERA[6]	. 30
RYSUNEK 10. OBIEG GOCHSZTEJNA [6]	. 31
RYSUNEK 11.CYKL PRZEMIAN TERMODYNAMICZNYCH NADKRYTYCZNEGO OBIEGU CLAUSIUSA-RANKINE'A	٩Z
ZASTOSOWANIEM A) CZYNNIKA MOKREGO, B) CZYNNIKA SUCHEGO	. 32
RYSUNEK 12.ZAKRES ZMIAN GÓRNEGO CIŚNIENIA ROBOCZEGO PRZY STAŁEJ TEMPERATURZE PARY NA	
WLOCIE DO TURBINY W NADKRYTYCZNYM OBIEGU CLAUSIUSA -RANKINE'A	. 33
RYSUNEK 13. KSZTAŁT KRZYWYCH NASYCENIA CZYNNIKÓW R41, R125, R143A ORAZ R32 W UKŁADZIE T-S	39
RYSUNEK 14. KSZTAŁT KRZYWYCH NASYCENIA CZYNNIKÓW R1234YF, R134A, R227EA, R161 ORAZ	
PROPYLENU W UKŁADZIE T-S	. 40
RYSUNEK 15. KSZTAŁT KRZYWYCH NASYCENIA CZYNNIKÓW RC318, R236FA, R152A, BUTANU ORAZ	
IZOBUTANU W UKŁADZIE T-S	. 40
RYSUNEK 16. PORÓWNANIE KSZTAŁTU KRZYWYCH NASYCENIA WYBRANYCH CZYNNIKÓW ROBOCZYCH	
WZGLĘDEM AMONIAKU W UKŁADZIE T-S	. 40
RYSUNEK 17. PORÓWNANIE KSZTAŁTU KRZYWYCH NASYCENIA AMONIAKU, CZYNNIKA R32 ORAZ WODY N	Ν
UKŁADZIE TS	. 40
RYSUNEK 18. SCHEMAT SIŁOWNI Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA-RANKINE'A WRAZ Z	
ZAZNACZENIEM PUNKTÓW CHARAKTERYSTYCZNYCH OBIEGU	. 41
RYSUNEK 19. WYKRES MOCY OBIEGU W FUNKCJI TEMPERATURY PARY NA WLOCIE DO TURBINY PRZY	
MINIMALNYM CISNIENIU GORNYM (P _{MIN})	. 48
RYSUNEK 20.WYKRES MOCY OBIEGU W FUNKCJI TEMPERATURY PARY NA WLOCIE DO TURBINY PRZY	
POSREDNIM CISNIENIU GORNYM (Pśr)	. 49
RYSUNEK 21. WYKRES MOCY OBIEGU W FUNKCJI TEMPERATURY PARY NA WLOCIE DO TURBINY PRZY	
GRANICZNYM CISNIENIU GORNYM (Pgr)	. 49
RYSUNEK 22. WYKRES SPRAWNOSCI OBIEGU W FUNKCJI TEMPERATURY PARY NA WLOCIE DO TURBINY	
PRZY MINIMALNEJ WARTOSCI CISNIENIA GORNEGO (PMIN)	. 50
RYSUNEK 23.WYKRES SPRAWNOSCI OBIEGU W FUNKCJI TEMPERATURY PARY NA WLOCIE DO TURBINY	
PRZY POSREDNIM CISNIENIU GORNYM (Psr)	. 51
RYSUNEK 24. WYKRES SPRAWNOSCI OBIEGU W FUNKCJI TEMPERATURY PARY NA WLOCIE DO TURBINY	
PRZY GRANICZNYM CISNIENIU GORNYM (Pgr)	. 51
KYSUNEK 25. WYKRES NATĘZENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO W FUNKCJI TEMPERATURY PARY I	NA
WLOCIE DO TURBINY PRZY MINIMALNYM CISNIENIU GORNYM (PMIN)	. 52
KYSUNEK 26. WYKRES NA IĘZENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO W FUNKCJI TEMPERATURY PARY I	NA
	. 52
KYSUNEK 27. WYKRES NA IĘZENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO W FUNKCJI TEMPERATURY PARY I	NA
WLOCIE DO TURBINY PRZY GRANICZNYM CISNIENIU GORNYM (Pgr)	. 53

RYSUNEK 28.WYKRES MOCY POMPOWANIA W FUNKCJI TEMPERATURY PARY NA WLOCIE DO TURBINY PRZY MINIMALNYM CIŚNIENIU GÓRNYM (PMIN)
RYSUNEK 29. WYKRES MOCY POMPOWANIA W FUNKCJI TEMPERATURY PARY NA WLOCIE DO TURBINY
PRZY POŚREDNIM CIŚNIENIU GÓRNYM (Pśr)54
RYSUNEK 30. WYKRES MOCY POMPOWANIA W FUNKCJI TEMPERATURY PARY NA WLOCIE DO TURBINY PRZY GRANICZNYM CIŚNIENIU GÓRNYM (P _{GR})
RYSUNEK 31. WYKRES ZALEŻNOŚCI MOCY OBIEGU OD PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO PRZY TPAR=95°C
RYSUNEK 32. WYKRES ZALEŻNOŚCI MOCY OBIEGU OD PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO PRZY TPAR=115°C 57
RYSUNEK 33. WYKRES ZALEŻNOŚCI MOCY OBIEGU OD PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO PRZY TPAR=135°C
RYSUNEK 34. WYKRES ZALEŻNOŚCI MOCY OBIEGU OD PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO PRZY TPAR=155°C 58
RYSUNEK 35. WYKRES ZALEŻNOŚCI SPRAWNOŚCI TERMICZNEJ OBIEGU W FUNKCJI CIŚNIENIA GÓRNEGO PRZY TPAR=95°C
RYSUNEK 36. WYKRES ZALEŻNOŚCI SPRAWNOŚCI OBIEGU OD PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO
RYSUNEK 37. WYKRES ZALEŻNOŚCI SPRAWNOŚCI OBIEGU OD PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO
RYSUNEK 38. WYKRES ZALEŻNOŚCI SPRAWNOŚCI TERMICZNEJ OBIEGU OD PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO PRZY TPAR=155°C 60
RYSUNEK 39. WYKRES ZALEŻNOŚCI NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO OD PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO, PRZY TPAR=95°C 61
RYSUNEK 40. WYKRES ZALEŻNOŚCI NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO OD PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO, PRZY TPAR–115°C 61
RYSUNEK 41. WYKRES ZALEŻNOŚCI NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO OD PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO, PRZY TRAR-125°C
RYSUNEK 42. WYKRES ZALEŻNOŚCI NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO OD PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO, PRZY TPAR=155°C 62
RYSUNEK 43. WYKRES ZALEŻNOŚCI PRACY PRZETŁACZANIA W FUNKCJI CIŚNIENIA GÓRNEGO PRZY TPAR=95°C
RYSUNEK 44. WYKRES ZALEŻNOŚCI MOCY PRZETŁACZANIA W FUNKCJI CIŚNIENIA GÓRNEGO PRZY TPAR=115°C 63
RYSUNEK 45. ZALEŻNOŚCI MOCY PRZETŁACZANIAW FUNKCJI CIŚNIENIA GÓRNEGO PRZY TPAR=135°C 64 RYSUNEK 46. WYKRES ZALEŻNOŚCI PRACY PRZETŁACZANIA W FUNKCJI CIŚNIENIA GÓRNEGO PRZY
TPAR=155°C
RYSUNEK 47. MAKSYMALNE SPRAWNOŚCI TERMICZNE SIŁOWNI ORC Z RÓŻNYMI CZYNNIKAMI ROBOCZYMI PRACUJĄCYMI W OBIEGU PODKRYTYCZNYM
RYSUNEK 48. MAKSYMALNE MOCE SIŁOWNI Z OBIEGIEM PODKRYTYCZNYM
RYSUNEK 49. MAKSYMALNE PRACE PRZETŁACZANIA CZYNNIKA ROBOCZEGO WSIŁOWNI Z OBIEGIEM
PODKRYTYCZNYM
RYSUNEK 50. MAKSYMALNE NATĘŻENIE PRZEPŁYWU CZYNNIKA ROBOCZEGO W SIŁOWNI Z OBIEGIEM PODKRYTYCZNYM
RYSUNEK 51.PORÓWNANIE MOCY OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO Z WYKORZYSTANIEM
AMONIAKU JAKO CZYNNIKA ROBOCZEGO
WYKORZYSTANIEM AMONIAKU JAKO CZYNNIKA ROBOCZEGO
RYSUNEK 53. PORÓWNANIE PRACY POMPOWANIA OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO Z
WYKORZYSTANIEM AMONIAKU JAKO CZYNNIKA ROBOCZEGO

RYSUNEK 54. PORÓWNANIE NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO OBIEGU NADKRYTYCZNEGO	ЗI
PODKRYTYCZNEGO Z WYKORZYSTANIEM AMONIAKU JAKO CZYNNIKA ROBOCZEGO	69
RYSUNEK 55. WYKRES WARTOŚCI PRACY JEDNOSTKOWEJ OBIEGU UZYSKANEJ PRZY MINIMALNYM	
CIŚNIENIU GÓRNYM	70
RYSUNEK 56.WYKRES WARTOŚCI PRACY JEDNOSTKOWEJ OBIEGU UZYSKANEJ PRZY POŚREDNIM CIŚNIEN	IU
GÓRNYM	70
RYSUNEK 57. WYKRES WARTOŚCI PRACY JEDNOSTKOWEJ OBIEGU UZYSKANEJ PRZY GRANICZNYM	
CIŚNIENIU GÓRNYM	71
RYSUNEK 58. ZMIANA WARTOŚCI PRACY JEDNOSTKOWEJ OBIEGU WZGLĘDEM CIŚNIENIA GÓRNEGO PRZ	Y
TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ T _{N1} =135°C	71
RYSUNEK 59. WPŁYW TEMPERATURY SKRAPLANIA NA SPRAWNOŚĆ SIŁOWNI ORC Z NADKRYTYCZNYM	
OBIEGIEM CLAUSIUSA-RANKINE'A	74
RYSUNEK 60. WYKRES SPRAWNOŚCI SIŁOWNI W ZALEŻNOŚCI OD PRZYJĘTEJ WARTOŚCI CIŚNIENIA	
GÓRNEGO	77
RYSUNEK 61. SCHEMAT STRUMIENI EGZERGII DLA UKŁADU OTWARTEGO W STANIE USTALONYM	79
RYSUNEK 62. OBIEG NADKRYTYCZNY Z CZYNNIKIEM R227EA NA WYKRESIE ENTALPIA, EGZERGIA	80
RYSUNEK 63. PRZEMIANY ROZPRĘŻANIA W TURBINIE W UKŁADZIE B, H	81
RYSUNEK 64. PRZEMIANY SKRAPLANIA CZYNNIKA ROBOCZEGO	82
RYSUNEK 65. PRZEMIANY SPRĘŻANIA W POMPIE W UKŁADZIE B, H	83
RYSUNEK 66. PRZEMIANY PODGRZEWANIA CZYNNIKA ROBOCZEGO	84
RYSUNEK 67. PRZEPŁYW STRUMIENI EGZERGII W NISKOTEMPERATUROWEJ ELEKTROWNI NADKRYTYCZN	IEJ
	85
RYSUNEK 68. BILANS EGZERGETYCZNY DLA CZYNNIKA R41 PRZY TEMPERATURZE ŹRÓDŁA TźR=100°C	90
RYSUNEK 69.BILANS EGZERGETYCZNY DLA CZYNNIKA R125 PRZY TEMPERATURZE ŹRÓDŁA Tźr=100°C	90
RYSUNEK 70.BILANS EGZERGETYCZNY DLA CZYNNIKA R143A PRZY TEMPERATURZE ŹRÓDŁA TźR=100°C	90
RYSUNEK 71.BILANS EGZERGETYCZNY DLA CZYNNIKA R143A PRZY TEMPERATURZE ŹRÓDŁA TźR=120°C	91
RYSUNEK 72.BILANS EGZERGETYCZNY DLA CZYNNIKA PROPYLEN PRZY TEMPERATURZE ŹRÓDŁA TźR=120°	C91
RYSUNEK 73. BILANS EGZERGETYCZNY DLA CZYNNIKA R1234YF PRZY TEMPERATURZE ŹRÓDŁA Tźr=120°C .	91
RYSUNEK 74.BILANS EGZERGETYCZNY DLA CZYNNIKA R152A PRZY TEMPERATURZE ŹRÓDŁA TźR=140°C	92
RYSUNEK 75. BILANS EGZERGETYCZNY DLA CZYNNIKA R236FA PRZY TEMPERATURZE ŹRÓDŁA Tźr=140°C	92
RYSUNEK 76.BILANS EGZERGETYCZNY DLA CZYNNIKA R143A PRZY TEMPERATURZE ŹRÓDŁA Tźr=140°C	92
RYSUNEK 77. BILANS EGZERGETYCZNY DLA CZYNNIKA BUTAN PRZY TEMPERATURZE ŹRÓDŁA Tźr=160°C	93
RYSUNEK 78.BILANS EGZERGETYCZNY DLA CZYNNIKA IZOBUTAN PRZY TEMPERATURZE ŹRÓDŁA TźR=160°	C93
RYSUNEK 79. BILANS EGZERGETYCZNY DLA CZYNNIKA R152A PRZY TEMPERATURZE ŹRÓDŁA TźR=160°C	93
RYSUNEK 80. ZMIANY WARTOŚCI UDZIAŁÓW PROCENTOWYCH POSZCZEGÓLNYCH SKŁADOWYCH BILANS	SU
EGZERGII DLA CZYNNIKA R143A	94
RYSUNEK 81.ZMIANY WARTOŚCI UDZIAŁÓW PROCENTOWYCH POSZCZEGÓLNYCH SKŁADOWYCH BILANSI	U
EGZERGII DLA CZYNNIKA R152A	95
RYSUNEK 82. PORÓWNANIE SPRAWNOŚCI EGZERGETYCZNEJ I TERMICZNEJ DLA WSZYSTKICH	
ROZPATRYWANYCH PRZYPADKÓW	95
RYSUNEK 83. PORÓWNANIE SPRAWNOŚCI EGZERGETYCZNEJ I TERMICZNEJ DLA CZYNNIKA R143A	96
RYSUNEK 84. STRATY EGZERGII W TURBINIE W ODNIESIENIU DO MOCY TURBINY	96
RYSUNEK 85. BILANS EGZERGII PRZY Tźr=100°C	97
RYSUNEK 86. BILANS EGZERGII PRZY Tźr=120°C	97
RYSUNEK 87. BILANS EGZERGII PRZY Tźr=140°C	98
RYSUNEK 88. BILANS EGZERGII PRZY Tźr=160°C	98

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE

WYDZIAŁ INŻYNIERII MECHANICZNEJ I MECHATRONIKI

KATEDRA TECHNIKI CIEPLNEJ

ZAŁĄCZNIK DO ROZPRAWY DOKTORSKIEJ

ANALIZA I OCENA TERMODYNAMICZNA EFEKTYWNOŚCI PRACY NISKO I ŚREDNIOTEMPERATUROWEJ SIŁOWNI PAROWEJ Z OBIEGIEM NADKRYTYCZNYM

mgr inż. Szymon Mocarski

Promotor: dr hab. inż. Aleksandra Borsukiewicz Promotor pomocniczy: dr inż. Sławomir Wiśniewski

Szczecin 2019

Spis treści

Załącznik 1 nadkrytycz	: PARAMETRY CZYNNIKA ROBOCZEGO W POSZCZEGÓLNYCH PUNKTACH UKŁADU SIŁOWNI Z OI NYM	BIEGIEM
Załącznik 2 obiegiem po	: PARAMETRY CZYNNIKA ROBOCZEGO W POSZCZEGÓLNYCH PUNKTACH OBIEGUANALOGICZNE DDKRYTYCZNYM (DLA CZYNNIKA MOKREGO)	j siłowni z 18
Załącznik 3 podkrytyczi	: PARAMETRY CZYNNIKA ROBOCZEGO W POSZCZEGÓLNYCH PUNKTACH ANALOGICZNEJ SIŁOW NYM (DLA CZYNNIKA SUCHEGO)	NI Z OBIEGIEM
załącznik 4	: Metodyka obliczeń wielkości charakterystycznych dla siłowni z obiegiem podkr	YTYCZNYM 35
załącznik 5	: WYNIKI OBLICZEŃ WIELKOŚCI CHARAKTERYSTYCZNYCH DLA OBIEGU PODKRYTYCZNEGO	
załącznik 6	: WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKÓW ROBOCZYCH PRZY ZMIENNEJ TEMPERATUR	ze skraplania 46
załącznik 7 ciśnienia gć	: Właściwości termodynamiczne czynników roboczych przy wyznaczaniu optyma śrnego	lnej wartości 53
ZAŁĄCZNIK 8	: WYNIKI OBLICZEŃ DLA OBIEGU NADKRYTYCZNEGO	
- 7AFAC2NIK Q	· Βάζνισε ωλαγτοζοι ωμεικοζοι σηλαγτεργετγοτήγου οριεσών Νλοκργτγοτήγου το το	
PRZYJĘTEJ W/	ARTOŚCI CIŚNIENIA GÓRNEGO	
ZAŁACZNIK 1	Ο. Βοβόωνανιε ωνβραννομ ωιεικοζοι ομαρακτερνζιμαργομ εξεκτυωνοζό βραργ οβιε	GU
NADKRYTYCZ	NEGO I PODKRYTYCZNEGO	
Α.	Czynnik R41	68
В.	Czynnik R125	71
C.	Czynnik R143a	74
D.	Czynnik R32	77
E.	Propylen	80
F.	Czynnik R1234yf	83
G.	Czynnik R134a	86
н.	Czynnik R227ea	89
Ι.	Czynnik R161	92
J.	Czynnik R152a	95
К.	Czynnik RC318	98
L.	Czynnik R236fa	
М.	Izobutan	
Ν.	Butan	
0.	Porównanie obiegu nadkrytycznego i podkrytycznego przy tej samej temperaturze pary	
Ρ.	Porównanie obiegu nadkrytycznego względem podkrytycznego z czynnikiem amoniak	
załącznik 1	1: POTRZEBY WŁASNE SIŁOWNI - WYKRESY	118
Załącznik 1	2: WYNIKI OBLICZEŃ PRAC JEDNOSTKOWYCH POMPY, TURBINY I OBIEGU	120
Załącznik 1 założeniu z	3: Wyniki obliczeń parametrów siłowni ORC z nadkrytycznym obiegiem Clausius. miennej wartości temperatury skraplania.	A RANKINE'A PRZY 123
Załącznik 1	4: ZMIANY SPRAWNOŚCI SIŁOWNI SPOWODOWANE PRZY DODATKOWEJ ANALIZIE WPŁYWU C	IŚNIENIA
GÓRNEGO DL	A POSZCZEGÓLNYCH ANALIZOWANYCH PRZYPADKÓW	127
SPIS TABEL		
SPIS RYSUN	IKÓW	137

ZAŁĄCZNIK 1: PARAMETRY CZYNNIKA ROBOCZEGO W POSZCZEGÓLNYCH PUNKTACH UKŁADU SIŁOWNI Z OBIEGIEM NADKRYTYCZNYM

W załączniku, w tabelach Z.1. – Z.42. podano kaloryczne oraz termiczne parametry stanu w poszczególnych punktach charakterystycznych nadkrytycznego obiegu Clausiusa - Rankine'a uzyskane przy pomocy bazy danych właściwości termodynamicznych czynników roboczych REFPROP 9.0 według metodyki wyznaczania tychże parametrów podanej w rozdziale 7.3.

Dla każdego czynnika roboczego poza amoniakiem podano po 3 tabele zawierające parametry stanu w zależności od temperatury źródła ciepła oraz przyjętego ciśnienia górnego.

Kolumny w których występuje znak "x" dotyczą przypadków, dla których realizacja obiegu nie jest możliwa z uwagi na przyczyny podane w rozdziale 4.4.

W przypadku amoniaku żaden wariant nie mógł zostać zrealizowany z przyczyn podanych w rozdziale 4.4. dlatego nie podano parametrów stanu dla tego czynnika.

R41	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
Tn1	95	115	135	х
T _{n2s}	30	30	30	х
$T_{n2} = T_{n3}$	30	30	30	х
T _{n4s}	40,345	44,642	49,711	х
p _{n1} = p _{n4s}	10,547	13,834	18,244	х
$p_{n2} = p_{n2s} = p_{n3}$	4,3039	4,3039	4,3039	х
h _{n1}	534,88	548,38	563,79	х
h _{n2s}	497,29	497,29	497,29	х
h _{n2}	497,29	497,29	497,29	х
h _{n3}	289,17	289,17	289,17	х
h _{n4s}	300,24	305,85	313,19	х
$S_{n1} = S_{n2s}$	1,9825	1,9825	1,9825	х
Sn2	1,9825	1,9825	1,9825	х
$S_{n3} = S_{n4s}$	1,296	1,296	1,296	х

Tabela Z. 1. Parametry czynnika R41 przy założeniu, że ciśnienie górne przyjmuje wartość minimalną (p_{min})

Tabela Z. 2. Parametry czynnika R41 przy założeniu, że ciśnienie górne przyjmuje wartość pośrednią (pśr)

R41	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	95	115	135	х
T _{n2s}	69,374	88,764	108,36	х
$T_{n2} = T_{n3}$	30	30	30	х
T _{n4s}	33,049	33,049	33,049	х
$p_{n1} = p_{n4s}$	5,898	5,898	5,898	х
$p_{n2} = p_{n2s} = p_{n3}$	4,3039	4,3039	4,3039	х
h _{n1}	625,12	663	698,32	х
h _{n2s}	604,7	639,96	672,96	х
h _{n2}	497,29	497,29	497,29	х
h _{n3}	289,17	289,17	289,17	х
h _{n4s}	292,06	292,06	292,06	х
$S_{n1} = S_{n2s}$	2,3189	2,4191	2,5079	х
Sn2	1,9825	1,9825	1,9825	х
$S_{n3} = S_{n4s}$	1,296	1,296	1,296	x

R41	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	95	115	135	х
T _{n2s}	44,073	48,113	50,44	х
$T_{n2} = T_{n3}$	30	30	30	х
T _{n4s}	36,926	39,382	42,404	х
p _{n1} = p _{n4s}	8,2225	9,866	12,071	х
$p_{n2} = p_{n2s} = p_{n3}$	4,3039	4,3039	4,3039	х
h _{n1}	582,76	606,03	626,05	х
h _{n2s}	548,41	558,91	564,58	х
h _{n2}	497,29	497,29	497,29	х
h _{n3}	289,17	289,17	289,17	х
h _{n4s}	296,19	299,06	302,85	х
$S_{n1} = S_{n2s}$	2,1478	2,1807	2,1983	х
Sn2	1,9825	1,9825	1,9825	x
Sn3 = Sn4s	1,296	1,296	1,296	x

Tabela Z. 4. Parametry czynnika R125 przy założeniu, że ciśnienie górne przyjmuje wartość minimalną (p_{min})

R125	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	95	115	135	155
T _{n2s}	30	30	30	30
$T_{n2} = T_{n3}$	30	30	30	30
T _{n4s}	33,815	36,372	41,363	49,975
$p_{n1} = p_{n4s}$	5,4763	8,6146	15,987	32,748
$p_{n2} = p_{n2s} = p_{n3}$	1,5685	1,5685	1,5685	1,5685
h _{n1}	361,22	366,77	376,39	394,01
h _{n2s}	344,71	344,71	344,71	344,71
h _{n2}	344,71	344,71	344,71	344,71
h _{n3}	239,91	239,91	239,91	239,91
h _{n4s}	243,21	245,81	251,76	264,72
$S_{n1} = S_{n2s}$	1,4817	1,4817	1,4817	1,4817
S _{n2}	1,4817	1,4817	1,4817	1,4817
$S_{n3} = S_{n4s}$	1,1359	1,1359	1,1359	1,1359

Tabela Z. 5. Parametry czynnika R125 przy założeniu, że ciśnienie górne przyjmuje wartość pośrednią (pśr)

R125	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	95	115	135	155
T _{n2s}	59,349	81,453	102,56	123,21
$T_{n2} = T_{n3}$	30	30	30	30
T _{n4s}	32,11	32,11	32,11	32,11
$p_{n1} = p_{n4s}$	3,6187	3,6187	3,6187	3,6187
$p_{n2} = p_{n2s} = p_{n3}$	1,5685	1,5685	1,5685	1,5685
h _{n1}	390,89	414,88	437,43	459,45
h _{n2s}	375,62	397,43	418,09	438,43
h _{n2}	344,71	344,71	344,71	344,71
h _{n3}	239,91	239,91	239,91	239,91
h _{n4s}	241,64	241,64	241,64	241,64
$S_{n1} = S_{n2s}$	1,5791	1,6426	1,6992	1,7519
S _{n2}	1,4817	1,4817	1,4817	1,4817
$S_{n3} = S_{n4s}$	1,1359	1,1359	1,1359	1,1359

R125	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	95	115	135	155
T _{n2s}	44,936	50,857	47,93	45,273
$T_{n2} = T_{n3}$	30	30	30	30
T _{n4s}	32,984	34,366	37,258	42,663
$p_{n1} = p_{n4s}$	4,5475	6,1167	9,8029	18,183
$p_{n2} = p_{n2s} = p_{n3}$	1,5685	1,5685	1,5685	1,5685
h _{n1}	378,01	389,64	393,32	401,32
h _{n2s}	360,96	367,06	364,06	361,31
h _{n2}	344,71	344,71	344,71	344,71
h _{n3}	239,91	239,91	239,91	239,91
h _{n4s}	242,43	243,74	246,79	253,5
$S_{n1} = S_{n2s}$	1,534	1,553	1,5437	1,5351
Sn2	1,4817	1,4817	1,4817	1,4817
$S_{n3} = S_{n4s}$	1,1359	1,1359	1,1359	1,1359

Tabela Z. 7. Parametry czynnika R143a przy założeniu, że ciśnienie górne przyjmuje wartość minimalną (p_{min})

R143a	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	95	115	135	155
T _{n2s}	30	30	30	30
$T_{n2} = T_{n3}$	30	30	30	30
T _{n4s}	33,097	34,73	37,273	41,653
$p_{n1} = p_{n4s}$	4,6425	6,553	9,8321	16,378
$p_{n2} = p_{n2s} = p_{n3}$	1,434	1,434	1,434	1,434
h _{n1}	423,64	429,94	437,73	449,62
h _{n2s}	400,07	400,07	400,07	400,07
h _{n2}	400,07	400,07	400,07	400,07
h _{n3}	247,56	247,56	247,56	247,56
h _{n4s}	251,05	253,1	256,56	263,31
$S_{n1} = S_{n2s}$	1,6652	1,6652	1,6652	1,6652
S _{n2}	1,6652	1,6652	1,6652	1,6652
Sn3 = Sn4s	1,1621	1,1621	1,1621	1,1621

Tabela Z. 8. Parametry czynnika R143 aprzy założeniu, że ciśnienie górne przyjmuje wartość pośrednią (pśr	ir)
---	-----

R143a	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	95	115	135	155
T _{n2s}	46,329	69,073	90,531	111,38
$T_{n2} = T_{n3}$	30	30	30	30
T _{n4s}	32,298	32,298	32,298	32,298
$p_{n1} = p_{n4s}$	3,762	3,762	3,762	3,762
$p_{n2} = p_{n2s} = p_{n3}$	1,434	1,434	1,434	1,434
h _{n1}	445,11	476,88	505,61	533,23
h _{n2s}	421,91	449,72	475,19	499,91
h _{n2}	400,07	400,07	400,07	400,07
h _{n3}	247,56	247,56	247,56	247,56
h _{n4s}	250,1	250,1	250,1	250,1
Sn1 = Sn2s	1,7354	1,8195	1,8917	1,9578
Sn2	1,6652	1,6652	1,6652	1,6652
$S_{n3} = S_{n4s}$	1,1621	1,1621	1,1621	1,1621

Tabela Z. 9. Parametry czynnika R143a przy założeniu, że ciśnienie górne przyjmuje wartość graniczną (pgr)
--

R143a	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	95	115	135	155
T _{n2s}	38,302	48,467	53,37	51,474
$T_{n2} = T_{n3}$	30	30	30	30
T _{n4s}	32,702	33,55	34,93	37,446
$p_{n1} = p_{n4s}$	4,2022	5,1575	6,797	10,07
$p_{n2} = p_{n2s} = p_{n3}$	1,434	1,434	1,434	1,434
h _{n1}	435,42	455,49	469,43	475,95
h _{n2s}	411,53	424,6	430,7	428,35
h _{n2}	400,07	400,07	400,07	400,07
h _{n3}	247,56	247,56	247,56	247,56
h _{n4s}	250,58	251,6	253,36	256,81
$S_{n1} = S_{n2s}$	1,7025	1,7438	1,7626	1,7554
Sn2	1,6652	1,6652	1,6652	1,6652
$S_{n3} = S_{n4s}$	1,1621	1,1621	1,1621	1,1621

Tabela Z. 10. Parametry czynnika R32 przy założeniu, że ciśnienie górne przyjmuje wartość minimalną (p_{min})

R32	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	115	135	155
T _{n2s}	х	30	30	30
$T_{n2} = T_{n3}$	х	30	30	30
T _{n4s}	х	33,347	34,615	36,148
$p_{n1} = p_{n4s}$	х	6,2365	7,9903	10,197
$p_{n2} = p_{n2s} = p_{n3}$	х	1,9275	1,9275	1,9275
h _{n1}	х	560,37	570,73	581,35
h _{n2s}	х	515,72	515,72	515,72
h _{n2}	х	515,72	515,72	515,72
h _{n3}	х	255,32	255,32	255,32
h _{n4s}	х	259,87	261,71	264
$S_{n1} = S_{n2s}$	х	2,0471	2,0471	2,0471
Sn2	x	2,0471	2,0471	2,0471
S _{n3} = S _{n4s}	x	1,1881	1,1881	1,1881

Tabela Z. 11. Parametry czynnika R32 przy założeniu, że ciśnienie górne przyjmuje wartość pośrednią (pśr)

R32	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
Tn1	х	115	135	155
T _{n2s}	х	35,275	53,779	72,908
$T_{n2} = T_{n3}$	х	30	30	30
T _{n4s}	х	33,011	33,011	33,011
p _{n1} = p _{n4s}	х	5,783	5,783	5,783
$p_{n2} = p_{n2s} = p_{n3}$	х	1,9275	1,9275	1,9275
hn1	х	568,09	600,37	629,5
h _{n2s}	х	524,29	550,06	573,49
h _{n2}	х	515,72	515,72	515,72
h _{n3}	х	255,32	255,32	255,32
h _{n4s}	х	259,4	259,4	259,4
$S_{n1} = S_{n2s}$	х	2,0751	2,1563	2,226
Sn2	х	2,0471	2,0471	2,0471
$S_{n3} = S_{n4s}$	x	1,1881	1,1881	1,1881

R32	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	115	135	155
T _{n2s}	х	32,562	40,639	47,754
$T_{n2} = T_{n3}$	х	30	30	30
T _{n4s}	х	33,179	33,822	34,614
p _{n1} = p _{n4s}	х	6,0098	6,8867	7,99
$p_{n2} = p_{n2s} = p_{n3}$	х	1,9275	1,9275	1,9275
h _{n1}	х	564,28	586,05	606,14
h _{n2s}	х	519,99	532,29	542,15
h _{n2}	х	515,72	515,72	515,72
h _{n3}	х	255,32	255,32	255,32
h _{n4s}	х	259,64	260,56	261,71
$S_{n1} = S_{n2s}$	х	2,0611	2,1008	2,1319
Sn2	x	2,0471	2,0471	2,0471
$S_{n3} = S_{n4s}$	x	1,1881	1,1881	1,1881

Tabela Z. 13. Parametry czynnika Propylen przy założeniu, że ciśnienie górne przyjmuje wartość minimalną (pmin)

Propylen	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	115	135	155
T _{n2s}	х	30	30	30
$T_{n2} = T_{n3}$	х	30	30	30
T _{n4s}	х	33,204	34,525	36,378
$p_{n1} = p_{n4s}$	х	5,2658	7,0377	9,6656
$p_{n2} = p_{n2s} = p_{n3}$	х	1,305	1,305	1,305
h _{n1}	х	665,86	678,23	692,01
h _{n2s}	х	602,19	602,19	602,19
h _{n2}	х	602,19	602,19	602,19
h _{n3}	х	277,2	277,2	277,2
h _{n4s}	х	285,09	288,58	293,72
$S_{n1} = S_{n2s}$	х	2,3352	2,3352	2,3352
S _{n2}	x	2,3352	2,3352	2,3352
$S_{n3} = S_{n4s}$	х	1,2631	1,2631	1,2631

Propylen	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
Tn1	х	115	135	155
T _{n2s}	х	43,461	67,208	89,344
$T_{n2} = T_{n3}$	х	30	30	30
T _{n4s}	х	32,657	32,657	32,657
$p_{n1} = p_{n4s}$	х	4,556	4,556	4,556
$p_{n2} = p_{n2s} = p_{n3}$	х	1,305	1,305	1,305
h _{n1}	х	692,87	748,46	799,17
h _{n2s}	х	629,12	674,98	717,6
h _{n2}	х	602,19	602,19	602,19
h _{n3}	х	277,2	277,2	277,2
h _{n4s}	х	283,68	283,68	283,68
$S_{n1} = S_{n2s}$	х	2,4221	2,5618	2,6831
S _{n2}	x	2,3352	2,3352	2,3352
$S_{n3} = S_{n4s}$	x	1,2631	1,2631	1,2631

Tabela Z. 15. Parametry czynnika Propylen przy założeniu, że ciśnienie górne przyjmuje wartość graniczną (p _{gr})

Propylen	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	115	135	155
T _{n2s}	х	36,869	48,417	56,484
$T_{n2} = T_{n3}$	х	30	30	30
T _{n4s}	х	32,932	33,607	34,578
p _{n1} = p _{n4s}	х	4,9109	5,7969	7,1108
$p_{n2} = p_{n2s} = p_{n3}$	х	1,305	1,305	1,305
h _{n1}	х	680,31	716,98	747,67
h _{n2s}	х	616,09	638,79	654,38
h _{n2}	х	602,19	602,19	602,19
h _{n3}	х	277,2	277,2	277,2
h _{n4s}	х	284,39	286,14	288,72
$S_{n1} = S_{n2s}$	х	2,3805	2,4524	2,5003
Sn2	х	2,3352	2,3352	2,3352
$S_{n3} = S_{n4s}$	х	1,2631	1,2631	1,2631

Tabela Z. 16. Parametry czynnika R1234 yf przy założeniu, że ciśnienie górne przyjmuje wartość minimalną (pmin)

R1234yf	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	115	135	х
T _{n2s}	х	31,244	31,244	х
$T_{n2} = T_{n3}$	х	30	30	х
T _{n4s}	х	32,516	33,972	х
$p_{n1} = p_{n4s}$	х	4,4282	6,7523	х
$p_{n2} = p_{n2s} = p_{n3}$	х	0,78351	0,78351	х
h _{n1}	х	246,67	251,79	х
h _{n2s}	х	219,68	219,68	х
h _{n2}	х	218,33	218,33	х
h _{n3}	х	77,09	77,09	х
h _{n4s}	х	80,458	82,577	х
$S_{n1} = S_{n2s}$	х	0,75043	0,75043	х
S _{n2}	x	0,74599	0,74599	х
$S_{n3} = S_{n4s}$	x	0,28009	0,28009	х

Tabela Z. 17. Parametry czynnika R1234 yf przy założeniu	że ciśnienie górne	przyjmuje wartość	ć pośrednią (p _{śr})
--	--------------------	-------------------	--------------------------------

R1234yf	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	хх	115	135	х
T _{n2s}	х	41,267	69,801	х
$T_{n2} = T_{n3}$	х	30	30	х
T _{n4s}	х	32,277	32,277	х
$p_{n1} = p_{n4s}$	х	4,0603	4,0603	х
$p_{n2} = p_{n2s} = p_{n3}$	х	0,78351	0,78351	х
h _{n1}	х	259,03	295,56	х
h _{n2s}	х	230,44	260,63	х
h _{n2}	х	218,33	218,33	х
h _{n3}	х	77,09	77,09	х
h _{n4s}	х	80,12	80,12	х
$S_{n1} = S_{n2s}$	х	0,78521	0,87714	х
S _{n2}	х	0,74599	0,74599	x
$S_{n3} = S_{n4s}$	x	0,28009	0,28009	x

Tabela Z. 18. Parametry czynnika R1234yf przy założeniu, że ciśnienie górne przyjmuje wartość graniczną (p _{gr})
--

R1234yf	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
Tn1	95	115	135	х
T _{n2s}	х	36,44	48,182	х
$T_{n2} = T_{n3}$	х	30	30	х
T _{n4s}	х	32,397	33,141	х
p _{n1} = p _{n4s}	х	4,2442	5,4063	х
$p_{n2} = p_{n2s} = p_{n3}$	х	0,78351	0,78351	х
h _{n1}	х	253,21	272,4	х
h _{n2s}	х	225,28	237,78	х
h _{n2}	х	218,33	218,33	х
h _{n3}	х	77,09	77,09	х
h _{n4s}	х	80,289	81,352	х
$S_{n1} = S_{n2s}$	х	0,76867	0,80832	х
Sn2	x	0,74599	0,74599	x
Sn3 = Sn4s	x	0,28009	0,28009	x

Tabela Z. 19. Parametry czynnika R134a przy założeniu, że ciśnienie górne przyjmuje wartość minimalną (p_{min})

R134a	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	115	135	155
T _{n2s}	х	30	30	30
$T_{n2} = T_{n3}$	х	30	30	30
T _{n4s}	х	32,048	32,961	34,36
$p_{n1} = p_{n4s}$	х	4,3221	6,0121	8,7282
$p_{n2} = p_{n2s} = p_{n3}$	х	0,7702	0,7702	0,7702
h _{n1}	х	448,13	453,58	459,73
h _{n2s}	х	414,82	414,82	414,82
h _{n2}	х	414,82	414,82	414,82
h _{n3}	х	241,72	241,72	241,72
h _{n4s}	х	244,7	246,1	248,34
Sn1 = Sn2s	х	1,7145	1,7145	1,7145
S _{n2}	x	1,7145	1,7145	1,7145
Sn3 = Sn4s	x	1,1435	1,1435	1,1435

Tabela Z. 20. Parametry czynnika R134a przy założeniu, że ciśnienie górne przyjmuje wartość pośrednią (pśr)

R134a	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
Tn1	х	115	135	155
T _{n2s}	х	35,889	61,914	84,848
$T_{n2} = T_{n3}$	х	30	30	30
T _{n4s}	х	31,903	31,903	31,903
$p_{n1} = p_{n4s}$	х	4,0603	4,0603	4,0603
$p_{n2} = p_{n2s} = p_{n3}$	х	0,7702	0,7702	0,7702
h _{n1}	х	454,88	487,43	515,21
h _{n2s}	х	421	447,36	470,4
h _{n2}	х	414,82	414,82	414,82
h _{n3}	х	241,72	241,72	241,72
h _{n4s}	х	244,48	244,48	244,48
$S_{n1} = S_{n2s}$	х	1,7347	1,8166	1,8831
S _{n2}	x	1,7145	1,7145	1,7145
$S_{n3} = S_{n4s}$	x	1,1435	1,1435	1,1435

R134a	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	Х	115	135	155
T _{n2s}	Х	33	46,266	54,612
$T_{n2} = T_{n3}$	Х	30	30	30
T _{n4s}	Х	31,975	32,438	33,162
$p_{n1} = p_{n4s}$	х	4,1912	5,0362	6,3943
$p_{n2} = p_{n2s} = p_{n3}$	х	0,7702	0,7702	0,7702
h _{n1}	х	451,65	472,43	488,16
h _{n2s}	х	417,99	431,62	440,04
h _{n2}	х	414,82	414,82	414,82
h _{n3}	Х	241,72	241,72	241,72
h _{n4s}	Х	244,59	245,29	246,41
$S_{n1} = S_{n2s}$	Х	1,7249	1,7685	1,7945
Sn2	х	1,7145	1,7145	1,7145
$S_{n3} = S_{n4s}$	x	1,1435	1,1435	1,1435

Tabela Z. 22. Parametry czynnika R227ea przy założeniu, że ciśnienie górne przyjmuje wartość minimalną (p_{min})

R227ea	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	115	135	155
T _{n2s}	х	40,348	40,348	40,348
$T_{n2} = T_{n3}$	х	30	30	30
T _{n4s}	х	31,759	33,102	37,69
$p_{n1} = p_{n4s}$	х	3,5837	6,1265	16,256
$p_{n2} = p_{n2s} = p_{n3}$	х	0,52842	0,52842	0,52842
h _{n1}	х	374,16	378,11	388,99
h _{n2s}	х	352,8	352,8	352,8
h _{n2}	х	343,35	343,35	343,35
h _{n3}	х	234,64	234,64	234,64
h _{n4s}	х	236,85	238,68	245,81
$S_{n1} = S_{n2s}$	х	1,5087	1,5087	1,5087
Sn2	х	1,478	1,478	1,478
$S_{n3} = S_{n4s}$	x	1,1194	1,1194	1,1194

Tabela Z. 23. Parametry czynnika R227ea przy założeniu, że ciśnienie górne przyjmuje wartość pośrednią (pśr)

R227ea	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	115	135	155
T _{n2s}	х	60,615	85,699	107,84
$T_{n2} = T_{n3}$	х	30	30	30
T _{n4s}	х	31,395	31,395	31,395
$p_{n1} = p_{n4s}$	х	2,926	2,926	2,926
$p_{n2} = p_{n2s} = p_{n3}$	х	0,52842	0,52842	0,52842
h _{n1}	х	394,38	420,87	444,42
h _{n2s}	х	371,24	394,33	415,16
h _{n2}	х	343,35	343,35	343,35
h _{n3}	х	234,64	234,64	234,64
h _{n4s}	х	236,37	236,37	236,37
$S_{n1} = S_{n2s}$	х	1,5657	1,6324	1,6887
Sn2	x	1,478	1,478	1,478
$S_{n3} = S_{n4s}$	x	1,1194	1,1194	1,1194

Tabela Z. 24.Parametry czynnika R227ea przy założeniu, że ciśnienie górne przyjmuje wartość graniczną (p _{gr})
--

R227ea	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
Tn1	х	115	135	155
T _{n2s}	х	52,221	58,936	52,257
$T_{n2} = T_{n3}$	х	30	30	30
T _{n4s}	х	31,578	32,269	34,79
p _{n1} = p _{n4s}	х	3,2548	4,5263	9,591
$p_{n2} = p_{n2s} = p_{n3}$	х	0,52842	0,52842	0,52842
h _{n1}	х	386,47	396,99	396,52
h _{n2s}	х	363,6	369,71	363,63
h _{n2}	х	343,35	343,35	343,35
h _{n3}	х	234,64	234,64	234,64
h _{n4s}	х	236,61	237,53	241,14
$S_{n1} = S_{n2s}$	х	1,5425	1,5611	1,5426
Sn2	х	1,478	1,478	1,478
$S_{n3} = S_{n4s}$	х	1,1194	1,1194	1,1194

Tabela Z. 25. Parametry czynnika R161 przy założeniu, że ciśnienie górne przyjmuje wartość minimalną (p_{min})

R161	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	115	x	х
T _{n2s}	х	30	х	х
$T_{n2} = T_{n3}$	х	30	х	х
T _{n4s}	х	31,834	х	х
$p_{n1} = p_{n4s}$	х	4,5617	х	х
$p_{n2} = p_{n2s} = p_{n3}$	х	1,0586	х	х
h _{n1}	х	655,36	х	х
h _{n2s}	х	591,91	х	х
h _{n2}	х	591,91	x	х
h _{n3}	х	263,23	x	х
h _{n4s}	х	268,15	х	х
$S_{n1} = S_{n2s}$	х	2,3008	х	х
S _{n2}	x	2,3008	x	x
Sn3 = Sn4s	x	1,2166	x	x

R161	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
Tn1	х	115	х	х
T _{n2s}	х	30,001	х	х
$T_{n2} = T_{n3}$	х	30	х	х
T _{n4s}	х	32,097	х	х
p _{n1} = p _{n4s}	х	5,092	х	х
$p_{n2} = p_{n2s} = p_{n3}$	х	1,0586	х	х
h _{n1}	х	634,09	х	х
h _{n2s}	х	571,82	х	х
h _{n2}	х	591,91	х	х
h _{n3}	х	263,23	х	х
h _{n4s}	х	268,88	х	х
$S_{n1} = S_{n2s}$	х	2,2345	х	х
S _{n2}	x	2,3008	x	x
$S_{n3} = S_{n4s}$	х	1,2166	x	x

R161	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	115	х	х
T _{n2s}	Х	30,001	х	х
$T_{n2} = T_{n3}$	х	30	х	х
T _{n4s}	х	31,966	х	х
$p_{n1} = p_{n4s}$	х	4,8269	х	x
$p_{n2} = p_{n2s} = p_{n3}$	х	1,0586	х	х
h _{n1}	х	645,4	х	х
h _{n2s}	х	582,31	х	х
h _{n2}	х	591,91	х	х
h _{n3}	х	263,23	х	х
h _{n4s}	х	268,52	х	х
Sn1 = Sn2s	х	2,2691	х	х
Sn2	х	2,3008	x	x
Sn3 = Sn4s	x	1,2166	x	x

Tabela Z. 28. Parametry czynnika R152 aprzy założeniu, że ciśnienie górne przyjmuje wartość minimalną (p_{min})

R152a	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
Tn1	х	х	135	155
T _{n2s}	х	х	30	30
$T_{n2} = T_{n3}$	х	х	30	30
T _{n4s}	х	х	32,163	32,988
$p_{n1} = p_{n4s}$	x	х	4,6582	6,2543
$p_{n2} = p_{n2s} = p_{n3}$	х	х	0,68982	0,68982
h _{n1}	х	х	587,83	596,81
h _{n2s}	х	х	525,96	525,96
h _{n2}	х	х	525,96	525,96
h _{n3}	х	х	252,8	252,8
h _{n4s}	х	х	257,25	259,03
$S_{n1} = S_{n2s}$	х	х	2,0828	2,0828
S _{n2}	x	x	2,0828	2,0828
Sn3 = Sn4s	х	х	1,1817	1,1817

Tabela Z. 29. Parametry czynnika R152a przy założeniu, że ciśnienie górne przyjmuje wartość pośrednią (psr)

R152a	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	х	135	155
T _{n2s}	х	х	32,775	57,4
$T_{n2} = T_{n3}$	х	х	30	30
T _{n4s}	х	х	32,09	32,09
$p_{n1} = p_{n4s}$	х	х	4,5178	4,5178
$p_{n2} = p_{n2s} = p_{n3}$	х	х	0,68982	0,68982
h _{n1}	х	х	591,65	632,5
h _{n2s}	х	х	529,53	560,64
h _{n2}	х	х	525,96	525,96
h _{n3}	х	х	252,8	252,8
h _{n4s}	х	х	257,1	257,1
$S_{n1} = S_{n2s}$	х	х	2,0945	2,1923
S _{n2}	х	x	2,0828	2,0828
$S_{n3} = S_{n4s}$	x	x	1,1817	1,1817

Tabela Z. 30.Parametry czynnika R152a przy założeniu, że ciśnienie górne przyjmuje wartość graniczną (p _{gr})

R152a	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	х	135	155
T _{n2s}	х	х	31,398	43,64
$T_{n2} = T_{n3}$	х	х	30	30
T _{n4s}	х	х	32,127	32,542
p _{n1} = p _{n4s}	х	х	4,588	5,3861
$p_{n2} = p_{n2s} = p_{n3}$	х	х	0,68982	0,68982
h _{n1}	х	х	589,76	616,01
h _{n2s}	х	х	527,76	543,36
h _{n2}	х	х	525,96	525,96
h _{n3}	х	х	252,8	252,8
h _{n4s}	х	х	257,18	258,07
Sn1 = Sn2s	х	х	2,0887	2,1389
Sn2	х	х	2,0828	2,0828
$S_{n3} = S_{n4s}$	x	x	1,1817	1,1817

Tabela Z. 31. Parametry czynnika RC318 przy założeniu, że ciśnienie górne przyjmuje wartość minimalną (pmin)

RC318	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	х	135	155
T _{n2s}	х	х	51,966	51,966
$T_{n2} = T_{n3}$	х	х	30	30
T _{n4s}	х	х	31,812	34,282
$p_{n1} = p_{n4s}$	х	х	4,0108	9,6368
$p_{n2} = p_{n2s} = p_{n3}$	х	х	0,36556	0,36556
h _{n1}	х	х	377,38	383,78
h _{n2s}	х	х	353,24	353,24
h _{n2}	х	х	334,67	334,67
h _{n3}	х	х	232,72	232,72
h _{n4s}	х	х	235,18	238,91
$S_{n1} = S_{n2s}$	х	х	1,5085	1,5085
S _{n2}	x	x	1,4494	1,4494
$S_{n3} = S_{n4s}$	х	х	1,1131	1,1131

Tabela Z. 32. Parametry czynnika RC318 przy założeniu, że ciśnienie górne przyjmuje wartość pośrednią (pśr)

RC318	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
Tn1	х	х	135	155
T _{n2s}	х	х	82,069	105,45
$T_{n2} = T_{n3}$	х	х	30	30
T _{n4s}	х	х	31,224	31,224
p _{n1} = p _{n4s}	х	х	2,7785	2,7785
$p_{n2} = p_{n2s} = p_{n3}$	х	х	0,36556	0,36556
hn1	х	х	405,78	429,82
h _{n2s}	х	х	379,49	400,59
h _{n2}	х	х	334,67	334,67
h _{n3}	х	х	232,72	232,72
h _{n4s}	х	х	234,36	234,36
$S_{n1} = S_{n2s}$	х	х	1,5857	1,6432
S _{n2}	x	x	1,4494	1,4494
$S_{n3} = S_{n4s}$	x	x	1,1131	1,1131

RC318	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	х	135	155
T _{n2s}	х	х	68,624	63,25
$T_{n2} = T_{n3}$	х	х	30	30
T _{n4s}	х	х	31,521	32,815
p _{n1} = p _{n4s}	х	х	3,3947	6,2077
$p_{n2} = p_{n2s} = p_{n3}$	х	х	0,36556	0,36556
h _{n1}	х	х	393,83	392,62
h _{n2s}	х	х	367,65	362,97
h _{n2}	х	х	334,67	334,67
h _{n3}	х	х	232,72	232,72
h _{n4s}	х	х	234,77	236,65
$S_{n1} = S_{n2s}$	х	х	1,5517	1,5379
Sn2	x	x	1,4494	1,4494
$S_{n3} = S_{n4s}$	x	x	1,1131	1,1131

Tabela Z. 34. Parametry czynnika R236fa przy założeniu, że ciśnienie górne przyjmuje wartość minimalną (pmin)

R236fa	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	х	135	155
T _{n2s}	х	х	42,561	42,561
$T_{n2} = T_{n3}$	х	х	30	30
T _{n4s}	х	х	31,458	32,22
$p_{n1} = p_{n4s}$	х	х	3,6105	5,423
$p_{n2} = p_{n2s} = p_{n3}$	х	х	0,32101	0,32101
h _{n1}	х	х	424,86	428,4
h _{n2s}	х	х	391,57	391,57
h _{n2}	х	х	380,23	380,23
hn3	х	х	237,28	237,28
h _{n4s}	х	х	239,72	241,05
$S_{n1} = S_{n2s}$	х	х	1,6371	1,6371
S _{n2}	x	х	1,6004	1,6004
Sn3 = Sn4s	x	х	1,1289	1,1289

Tabela Z. 35. Parametry czynnika R236fa przy założeniu, że ciśnienie górne przyjmuje wartość pośrednią (pśr)

R236fa	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
Tn1	х	х	135	155
T _{n2s}	х	х	57,037	84,551
$T_{n2} = T_{n3}$	х	х	30	30
T _{n4s}	х	х	31,282	31,282
$p_{n1} = p_{n4s}$	х	х	3,201	3,201
$p_{n2} = p_{n2s} = p_{n3}$	х	х	0,32101	0,32101
h _{n1}	х	х	440,23	471,3
h _{n2s}	х	х	404,74	430,33
h _{n2}	х	х	380,23	380,23
h _{n3}	х	х	237,28	237,28
h _{n4s}	х	х	239,42	239,42
$S_{n1} = S_{n2s}$	х	х	1,6779	1,7523
S _{n2}	x	х	1,6004	1,6004
$S_{n3} = S_{n4s}$	x	x	1,1289	1,1289

R236fa	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	х	135	155
T _{n2s}	х	х	50,805	64,484
$T_{n2} = T_{n3}$	х	х	30	30
T _{n4s}	х	х	31,37	31,756
p _{n1} = p _{n4s}	х	х	3,4058	4,312
$p_{n2} = p_{n2s} = p_{n3}$	х	х	0,32101	0,32101
h _{n1}	х	х	433,81	452,36
h _{n2s}	х	х	399,05	411,59
h _{n2}	х	х	380,23	380,23
h _{n3}	х	х	237,28	237,28
h _{n4s}	х	х	239,57	240,24
Sn1 = Sn2s	х	х	1,6605	1,6984
Sn2	х	х	1,6004	1,6004
Sn3 = Sn4s	x	x	1,1289	1,1289

Tabela Z. 37. Parametry czynnika Izobutan przy założeniu, że ciśnienie górne przyjmuje wartość minimalną (p_{min})

Izobutan	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
Tn1	х	х	х	155
T _{n2s}	х	х	х	41,086
$T_{n2} = T_{n3}$	х	х	х	30
T _{n4s}	х	х	х	32,252
$p_{n1} = p_{n4s}$	х	х	х	4,7467
$p_{n2} = p_{n2s} = p_{n3}$	х	х	х	0,40472
h _{n1}	х	х	х	703,02
h _{n2s}	х	х	х	615,06
h _{n2}	х	х	х	594,57
h _{n3}	х	х	х	271,24
h _{n4s}	х	х	х	279,18
$S_{n1} = S_{n2s}$	х	х	х	2,3787
S _{n2}	x	x	x	2,3123
$S_{n3} = S_{n4s}$	x	х	x	1,2458

Tabela Z. 38. Parametry czynnika Izobutan przy założeniu, że ciśnienie górne przyjmuje wartość pośrednią (pśr)

Izobutan	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
Tn1	х	х	х	155
T _{n2s}	х	х	х	72,27
$T_{n2} = T_{n3}$	х	х	х	30
T _{n4s}	х	х	х	31,694
p _{n1} = p _{n4s}	х	х	х	3,63
$p_{n2} = p_{n2s} = p_{n3}$	х	х	х	0,40472
h _{n1}	х	х	х	771,93
h _{n2s}	х	х	х	674,64
h _{n2}	х	х	х	594,57
h _{n3}	х	х	х	271,24
h _{n4s}	х	х	х	277,15
$S_{n1} = S_{n2s}$	х	х	х	2,5594
S _{n2}	х	х	x	2,3123
$S_{n3} = S_{n4s}$	х	х	x	1,2458

labela Z. 39.Parametry czynnika izobutan przy założeniu, że ciśnienie gorne przyjmuje wartość graniczną (p _{gr})
--

Izobutan	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	х	х	155
T _{n2s}	х	х	х	59,245
$T_{n2} = T_{n3}$	х	х	х	30
T _{n4s}	х	х	х	31,975
$p_{n1} = p_{n4s}$	х	х	х	4,1883
$p_{n2} = p_{n2s} = p_{n3}$	х	х	х	0,40472
h _{n1}	х	х	х	744,95
h _{n2s}	х	х	х	649,35
h _{n2}	х	х	х	594,57
h _{n3}	х	х	х	271,24
h _{n4s}	х	х	х	278,16
$S_{n1} = S_{n2s}$	х	х	х	2,4848
Sn2	х	x	х	2,3123
$S_{n3} = S_{n4s}$	x	x	x	1,2458

Tabela Z. 40.Parametry czynnika Butan przy założeniu, że ciśnienie górne przyjmuje wartość minimalną (p_{min})

Butan	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
T _{n1}	х	х	х	155
T _{n2s}	х	х	х	45,192
$T_{n2} = T_{n3}$	х	х	х	30
T _{n4s}	х	х	х	31,567
$p_{n1} = p_{n4s}$	х	х	х	3,8026
$p_{n2} = p_{n2s} = p_{n3}$	х	х	х	0,28341
h _{n1}	х	х	х	758,21
h _{n2s}	х	х	х	656,22
h _{n2}	х	х	х	628,06
h _{n3}	х	х	х	271,76
h _{n4s}	х	х	х	277,96
Sn1 = Sn2s	х	х	х	2,514
S _{n2}	x	x	x	2,4234
Sn3 = Sn4s	х	х	х	1,2481

Tabela Z. 41. Parametry czynnika Butan przy założeniu, że ciśnienie górne przyjmuje wartość pośrednią (pśr)

Butan	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
Tn1	х	х	х	155
T _{n2s}	х	х	х	45,497
$T_{n2} = T_{n3}$	х	х	х	30
T _{n4s}	х	х	х	31,564
p _{n1} = p _{n4s}	х	х	х	3,797
$p_{n2} = p_{n2s} = p_{n3}$	х	х	х	0,28341
h _{n1}	х	х	х	758,96
h _{n2s}	х	х	х	656,79
h _{n2}	х	х	х	628,06
hn3	х	х	х	271,76
h _{n4s}	х	х	х	277,95
$S_{n1} = S_{n2s}$	х	х	х	2,5158
S _{n2}	х	х	x	2,4234
$S_{n3} = S_{n4s}$	х	x	x	1,2481

Tabela Z. 42. Parametry	czynnika Butan przy zało	ożeniu, że ciśnienie górne	e przyjmuje wartość gran	iczną (p _{gr})

Butan	T _{w1} = 100 [°C]	T _{w1} = 120 [°C]	T _{w1} = 140 [°C]	T _{w1} = 160 [°C]
Tn1	х	х	х	155
T _{n2s}	х	x	х	45,344
$T_{n2} = T_{n3}$	х	x	х	30
T _{n4s}	х	x	х	31,566
$p_{n1} = p_{n4s}$	x	x	x	3,7998
$p_{n2} = p_{n2s} = p_{n3}$	х	x	х	0,28341
h _{n1}	х	x	х	758,59
h _{n2s}	х	x	х	656,5
h _{n2}	х	x	х	628,06
h _{n3}	х	x	х	271,76
h _{n4s}	х	x	х	277,95
$S_{n1} = S_{n2s}$	х	x	х	2,5149
Sn2	х	x	х	2,4234
$S_{n3} = S_{n4s}$	x	х	х	1,2481

ZAŁĄCZNIK 2: PARAMETRY CZYNNIKA ROBOCZEGO W POSZCZEGÓLNYCH PUNKTACH OBIEGU ANALOGICZNEJ SIŁOWNI Z OBIEGIEM PODKRYTYCZNYM (DLA CZYNNIKA MOKREGO)

W załączniku w tabelach Z.43 – Z.51 podano parametry czynników mokrych w poszczególnych punktach układu analogicznej siłowni z obiegiem podkrytycznym wyznaczone z wykorzystaniem bazy danych czynników termodynamicznych REFPROP 9.0.

			n1		
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
cp ai	34	34	4 7126	500 74	1 982
	35	35	4,8196	501,61	1,982
	36	36	4,9288	502,48	1,982
	37	37	5.04	503.35	1,982
	38	38	5,1535	504,22	1,982
	39	39	5.2694	505.1	1.9825
	40	40	5 3876	505.97	1 9825
	41	41	5.5084	506.85	1.982
	42	42	5 6319	507 74	1 982
	43	43	5.7586	508.63	1,982
	44	44	5 8889	509 53	1 982
			n2	303,33	1,5020
tnar		+ [°C]	n [MPa]	h [k]/kg]	s [k]/køK]
34-44		30	4 3039	497.29	
54 44		50	n3	457,25	1,5025
tnar		+ [°C]	n [MPa]	h [k]/kg]	s [k]/kgK]
3/_//		20	N 2020	280 17	1 206
J4-44		50	4,5055	209,17	1,290
tnar		+ [°C]	n [MDa]	h [k]/kg]	s [k]/kaK]
граг	24	20.92	p [IVIFa] 4 7126	11 [NJ/Ng] 290 01	1 206
	25	21.02	4,7120	209,91	1,290
	35	21 242	4,0190	290,11	1,290
	20	21,242	4,9200	290,5	1,290
	37	31,457	5,04	290,51	1,290
	38	31,674	5,1535	290,71	1,296
	39	31,893	5,2694	290,92	1,296
	40	32,115	5,3876	291,14	1,296
	41	32,339	5,5084	291,36	1,296
	42	32,566	5,6319	291,58	1,296
	43	32,797	5,7586	291,81	1,296
	44	33,033	5,8889	292,04	1,296
+		+ [%C]	n5	h [1.1/1]	
tpar	24			n [KJ/Kg]	s [KJ/ KgK]
	34	34	4,/126	304,78	1,344/
	35	35	4,8196	309,03	1,3578
	36	36	4,9288	313,46	1,3/15
	37	37	5,04	318,13	1,3858
	38	38	5,1535	323,08	1,401
	39	39	5,2694	328,4	1,4173
	40	40	5,3876	334,22	1,4351
	41	41	5,5084	340,78	1,4551
	42	42	5,6319	348,54	1,4789
	43	43	5,7586	358,77	1,5104
	44	44	5,8889	379,81	1,5757
			n6		
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
	34	34	4,7126	486,62	1,9367
	35	35	4,8196	483,4	1,9237
	36	36	4,9288	479,88	1,9098
	37	37	5,04	476	1,8948
	38	38	5,1535	471,68	1,8786
	39	39	5,2694	466,79	1,8606
	40	40	5,3876	461,15	1,8404
	41	41	5,5084	454,42	1,8169
	42	42	5,6319	445,97	1,788
	43	43	5,7586	434,1	1,7486
	4.4	44	E 0000	109 PE	1 6672

			n1		
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
	56	56	2,9027	353,42	1,4817
	57	57	2,9677	353,71	1,4817
	58	58	3,0339	354	1,4817
	59	59	3,1015	354,29	1,4817
	60	60	3,1703	354,57	1,4817
	61	61	3,2405	354,86	1,4817
	62	62	3,3121	355,13	1,4817
	63	63	3,3853	355,41	1,4817
	64	64	3,4602	355,69	1,4817
	65	65	3,537	355,97	1,4817
	66	66	3,6161	356,24	1,4817
			n2	,,	
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
56-66		30	1.5685	344.71	1.4817
			n3	• • • •,• =	
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
56-66		30	1.5685	239.91	1.1359
			,2000 n4s	_00)01	
tnar		t [°C]	n [MPa]	h [k]/kø]	s [k]/kgK]
epui	56	31 403	2 9027	241 04	1 1359
	57	31,468	2,9677	241,04	1 1359
	58	31,400	3 0339	241,05	1 1359
	50	31,555	3,000	241,13	1,1355
	60	31,002	3,1013	241,21	1 1359
	61	31,071	3,1705	241,20	1,1359
	62	21 811	3,2403	241,32	1 1359
	63	21 882	3,3121	241,38	1,1359
	64	31,005	3,5055	241,43	1,1355
	65	22 021	2 5 2 7	241,51	1,1359
	66	22,031	2,537	241,38	1,1335
	00	52,100		241,04	1,1339
tnar		+ [°C]	n [MPa]	h [k]/kg]	s [k]/kgK]
tpai	56	56	2 0027	281 75	1 2641
	50	50	2,3027	201,73	1,2041
	50	57	2,9077	203,73	1,2035
	50	50	2,0535	203,77	1,2738
	59	59	3,1013	207,00	1,202
	60	60	3,1705	290,1	1,2004
	61	61	3,2405	292,44	1,2952
	62	62	3,3121	294,93	1,3024
	64	03	3,3033	297,7	1,3104
	64	65	3,4002	300,80	1,5195
	60	05	3,557	304,00	1,5511
	66	60	3,6161	314,80	1,3602
		+ [%C]	[]D	h [].]/]]	- []+] /]+=[/]
tpar	ГС			11 [KJ/Kg]	5 [KJ/KgK]
	50	50	2,9027	345	1,4503
	57	57	2,9677	344,47	1,4539
	58	58	3,0339	343,85	1,4512
	59	59	3,1015	343,1	1,4482
	60	60	3,1/03	342,21	1,4448
	61	61	3,2405	341,13	1,4409
	62	62	3,3121	339,79	1,4362
	63	63	3,3853	338,08	1,4305
	64	64	3,4602	335,77	1,423
	65	65	3,537	332,24	1,412
	66	66	3,6161	321,41	1,3795

Tabela Z. 44. Parametry czynnika R125 w poszczególnych punktach siłowni z obiegiem podkrytyc	cznym
--	-------

		n1		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
62	62	3,0003	415,36	1,6652
63	63	3,0649	415,78	1,6652
64	64	3.1307	416.19	1.6652
65	65	3 1977	416.61	1 6652
66	66	3,1577	410,01	1,6652
67	67	2 2255	417,02	1,0032
67	67	3,3333	417,42	1,0032
68	68	3,4065	417,83	1,6652
69	69	3,4788	418,23	1,6652
/0	/0	3,5527	418,64	1,6652
71	71	3,6282	419,04	1,6652
72	72	3,7056	419,44	1,6652
	1	n2		1
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
62-72	30	1,434	400,07	1,6652
		n3		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
62-72	30	1,434	247,56	1,1621
	1	n4s		· · · ·
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
62	31 578	3 0003	249.27	1 1621
63	31.64	3 0649	249.34	1 1621
64	31,04	3,0045	249,54	1,1021
65	21 767	3,1307	249,42	1,1021
05	31,707	5,1977	249,49	1,1021
66	31,832	3,200	249,56	1,1621
67	31,898	3,3355	249,64	1,1621
68	31,965	3,4065	249,71	1,1621
69	32,033	3,4788	249,79	1,1621
70	32,103	3,5527	249,87	1,1621
71	32,173	3,6282	249,96	1,1621
72	32,245	3,7056	250,04	1,1621
	1	n5	1	
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
62	62	3,0003	309,82	1,3508
63	63	3,0649	312,28	1,3578
64	64	3,1307	314,82	1,3651
65	65	3,1977	317,45	1,3726
66	66	3,266	320,19	1,3804
67	67	3,3355	323,08	1,3886
68	68	3,4065	326.15	1.3973
69	69	3.4788	329.48	1.4067
70	70	3,5527	333.19	1,4172
71	71	3 6282	337.6	1 4296
72	72	3 7056	3/13 72	1 //7
12	12	3,7030 n6	545,72	1,447
thar	+ [°C]		$b \left[k \right] / k \sigma$	
tpai (2			11 [KJ/Kg]	5 [KJ/ KgK]
62	62	3,0003	357,80	1,0134
63	63	3,0649	397,02	1,6099
64	64	3,1307	396,05	1,606
65	65	3,1977	394,94	1,6018
66	66	3,266	393,66	1,597
67	67	3,3355	392,16	1,5917
68	68	3,4065	390,37	1,5855
69	69	3,4788	388,18	1,5783
70	70	3,5527	385,42	1,5694
71	71	3,6282	381,65	1,5576
72	72	3,7056	375,52	1,5391

Tabela Z. 45. Parametry czynnika R143a w poszczególnych punktach siłowni z obiegiem podkrytycznym

			n1		
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
	68	68	4,6745	548,77	2,047
	69	69	4,7748	549,61	2,047
	70	70	4,8768	550,45	2,047
	71	71	4,9808	551,29	2,047
	72	72	5,0866	552,12	2,047
	73	73	5,1946	552,96	2,0471
	74	74	5,3046	553,8	2,0471
	75	75	5,4168	554,64	2,0471
	76	76	5,5315	555,49	2,0471
	77	77	5,6489	556,34	2,047
	78	78	5,7697	557,19	2,047
		L	n2	· ·	· ·
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
68-78		30	1,9275	515,72	2,0471
		L.	n3	, ,	
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
68-78		30	1,9275	255,32	1,1881
			n4s	,	,
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
-1	68	32.175	4.6745	258.23	1.1881
	69	32.252	4,7748	258.34	1.1881
	70	32,329	4.8768	258.45	1.1881
	71	32,408	4,9808	258,56	1,1881
	72	32 488	5.0866	258.67	1 1881
	73	32.57	5,1946	258,78	1,1881
	74	32 653	5 3046	258.9	1 1881
	75	32,737	5,4168	259.01	1,1881
	76	32,823	5 5315	259,01	1 1881
	77	32,023	5 6489	259,25	1 1881
	78	33,001	5,0405	259,20	1 1881
	70	33,001		200,00	1,1001
tpar		t [°C]	p [MPa]	h [k]/kg]	s [k]/kgK]
tpu.	68	68	4.6745	345.02	1.4553
	69	69	4 7748	348 31	1 4645
	70	70	4 8768	351 73	1 474
	71	71	4 9808	355 32	1 484
	72	72	5.0866	359 11	1 4946
	73	72	5 1946	363 15	1 5058
	74	73	5 3046	367 53	1 5179
	75	75	5 4168	372 39	1 5314
	76	75	5 5315	378.03	1 547
	77	77	5 6489	385.26	1 5671
	78	78	5,7697	400.38	1 6095
	70	70		+00,30	1,0055
tnar		+ [°C]	n [MPa]	h [k]/kg]	s [k]/kgK]
tpai	68	68	4 6745	484.25	1 8634
	69	69	4,0749	481.99	1 8552
	70	70	4,7740	401,99	1 9/6/
	70	70	4,0700	475,32	1 02
	71	71	4,3000 5 NSEE	470,0 AT2 77	1 8260
	72	72	5,0000	4/3,//	1,0200
	/3	73	5,1940	4/0,35	1,015
	74	74 75	5,5040	400,41	1,002
	75	75	5,4168	401,72	1,/88
	70	/6	5,5315	455,80	1,7695
	7/	//	5,6489	447,64	1,7452
	78	/8	5,7697	428,9	1,6907

		n1		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
. 81	81	3,79	651,52	2,3352
82	82	3,8605	652,34	2,3352
83	83	3,9321	653,15	2,3352
84	84	4,0049	653,96	2,3352
85	85	4,0788	654,76	2,3352
86	86	4,1539	655,57	2,3352
87	87	4,2302	656,37	2,3352
88	88	4,3079	657,16	2,3352
89	89	4,3869	657,96	2,3352
90	90	4,4675	658,75	2,3352
91	91	4,5499	659,55	2,3352
		n2		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
81-91	30	1,305	602,19	2,3352
		n3		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
81-91	30	1,305	277,2	1,2631
		n4s		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
81	32,054	3,79	282,16	1,2631
82	32,11	3,8605	282,3	1,2631
83	32,167	3,9321	282,44	1,2631
84	32,225	4,0049	282,59	1,2631
85	32,283	4,0788	282,73	1,2631
86	32,342	4,1539	282,88	1,2631
87	32,402	4,2302	283,04	1,2631
88	32,463	4,3079	283,19	1,2631
89	32,525	4,3869	283,35	1,2631
90	32,588	4,4675	283,51	1,2631
91	32,652	4,5499	283,67	1,2631
		n5		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
81	81	3,79	443,16	1,7488
82	82	3,8605	447,73	1,7611
83	83	3,9321	452,47	1,7738
84	84	4,0049	457,41	1,7871
85	85	4,0788	462,59	1,801
86	86	4,1539	468,1	1,8157
87	87	4,2302	474,03	1,8316
88	88	4,3079	480,56	1,849
89	89	4,3869	488,08	1,8691
90	90	4,4675	497,56	1,8945
91	91	4,5499	517,74	1,9491
	-	n6		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
81	81	3,79	603,51	2,2015
82	82	3,8605	601,73	2,1947
83	83	3,9321	599,7	2,1872
84	84	4,0049	597,37	2,179
85	85	4,0788	594,69	2,1698
86	86	4,1539	591,55	2,1595
87	87	4,2302	587,8	2,1475
88	88	4,3079	583,18	2,1332
89	89	4,3869	577,18	2,1151
90	90	4,4675	568,44	2,0897
91	91	4,5499	545.91	2.0265

|--|

Tabela Z. 40. Parali	eti y czyfifika K154a w	poszczegomych punkta	Li showili z oblegielii pou	KIYUYUZIIYIII
	1	n1	Г	Г
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
91	. 91	3,3112	443,5	1,7145
92	92	3,3793	443,86	1,7145
93	93	3,4487	444,22	1,7145
94	. 94	3,5193	444,58	1,7145
95	95	3,5912	444,94	1,7145
96	96	3,6645	445,29	1,7145
97	97	3,7391	445,64	1,7145
98	98	3,8152	445,99	1,7145
99	99	3,8929	446,34	1,7145
100	100	3,9724	446,69	1,7145
101	. 101	4,0541	447,04	1,7145
		n2		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
91-101	30	0,7702	414,82	1,7145
		n3		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
91-101	30	0,7702	241,72	1,1435
		n4s		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
91	. 31,484	3,3112	243,85	1,1435
92	31,522	3,3793	243,91	1,1435
93	31,561	3,4487	243,97	1,1435
94	31,601	3,5193	244,03	1,1435
95	31,641	3,5912	244,09	1,1435
96	31,682	3,6645	244,15	1,1435
97	31,724	3,7391	244,21	1,1435
98	31,767	3,8152	244,27	1,1435
99	31,81	3,8929	244,34	1,1435
100	31.854	3.9724	244.4	1.1435
101	. 31,899	4,0541	244,47	1,1435
	,	n5	,	· · ·
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
91	. 91	3,3112	345,22	1,4451
92	92	3.3793	347.59	1.4514
93	93	3,4487	350.03	1.4578
94	94	3.5193	352.58	1.4645
95	95	3,5912	355.25	1.4715
96	96	3,6645	358.07	1.4789
97	97	3.7391	361.12	1.4869
98	98	3,8152	364.47	1,4957
99	99	3.8929	368.34	1.5058
100	100	3 9724	373.3	1 5188
101	101	4 0541	384 35	1 548
101	101	n6	504,55	1,540
tnar	t [°C]	n [MPa]	h [k]/kg]	s [k]/kgK]
91	91	3 3112	424 72	1 6634
92	92	3 3793	423.92	1,604
02	02	2 // 1/27	/123,32	1 6571
95	93	3,4407	422,33	1,0371
94	94	2 5012	421,92	1 6/07
93	95	2,5912 2 GEAE	420,07	1 6492
90	90	2,0045 2,0045	419,18	1,0445
97	97	3,/391	417,39	1,0389
98	98	3,8152	415,14	1,0322
99	99	3,8929	412,16	1,6235
100	100	3,9/24	407,68	1,6109
101	101	4,0541	395,43	1,5776

Tabela Z. 48. Parametry czynnika R134a w poszczególnych punktach siłowni z obiegiem po	dkrytycznym
--	-------------

Tabela Z. 49. Paralli	etry czynnika kiół w	poszczegomych punktaci	i showili z oblegielili pouki	ytycznym
	1	n1		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
92	92	4,1836	651,64	2,3008
93	93	4,2655	652,48	2,3008
94	94	4,349	653,31	2,3008
95	95	4,4341	654,14	2,3008
96	96	4,5209	654,97	2,3008
97	97	4,6093	655,8	2,3008
98	98	4,6994	656,63	2,3008
99	99	4,7912	657,46	2,3008
100	100	4,8846	658,28	2,3008
101	101	4,9794	659,1	2,3008
102	102	5,0754	659,92	2,3008
	1	n2	1	
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
92-102	30	1,0586	591,91	2,3008
	7	n3		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
92-102	30	1,0586	263,23	1,2166
		n4s		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
92	31,644	4,1836	267,62	1,2166
93	31,685	4,2655	267,73	1,2166
94	31,727	4,349	267,85	1,2166
95	31,77	4,4341	267,97	1,2166
96	31,813	4,5209	268,09	1,2166
97	31,857	4,6093	268,21	1,2166
98	31,902	4,6994	268,34	1,2166
99	31,948	4,7912	268,47	1,2166
100	31,994	4,8846	268,6	1,2166
101	32,041	4,9794	268,73	1,2166
102	32,089	5,0754	268,86	1,2166
		n5		·
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
92	92	4,1836	426,03	1,6866
93	93	4,2655	430,01	1,6971
94	94	4,349	434,2	1,7081
95	95	4,4341	438,67	1,7197
96	96	4,5209	443,49	1,7323
97	97	4,6093	448,8	1,7462
98	98	4,6994	454,84	1,762
99	99	4,7912	462,03	1,7808
100	100	4,8846	471,08	1,8045
101	101	4,9794	483,19	1,8362
102	102	5,0754	502,99	1,8884
		n6		· · · · · ·
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
92	92	4,1836	582,75	2,1158
93	93	4,2655	580,3	2,1075
94	94	4,349	577,54	2,0985
95	95	4.4341	574.41	2.0885
96	96	4,5209	570,85	2,0774
97	97	4.6093	566.75	2.0649
98	98	4.6994	561.94	2.0506
99	99	4.7912	556.2	2.0338
100	100	4.8846	549.11	2.0136
101	101	4.9794	539.73	1.9874
102	102	5.0754	522.98	1.9417
101	101	5,5.51	5==,50	-,- 11

Tabela Z. 49. Parametry czynnika R161 w po	czególnych punktach siłowni z	obiegiem podkrytycznym
--	-------------------------------	------------------------

		n1		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
103	103	3,7135	580,78	2,0828
104	104	3,7853	581,38	2,0828
105	105	3.8583	581.98	2.0828
106	106	3 9325	582 57	2 0828
100	107	4 0081	583 17	2,0020
109	109	4,0001	583.76	2,0020
100	100	4,005	505,70 EQ4.2E	2,0828
109	109	4,1055	504,55	2,0828
110	110	4,2432	584,94	2,0828
111	111	4,3247	585,53	2,0828
112	112	4,4081	586,12	2,0828
113	113	4,4938	586,72	2,0828
	1	n2		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
103-113	30	0,68982	525,96	2,0828
	-	n3		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
103-113	30	0,68982	252,8	1,1817
		n4s		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
103	31,664	3,7135	256,2	1,1817
104	31,702	3,7853	256,28	1,1817
105	31,741	3,8583	256,36	1,1817
106	31,78	3,9325	256,44	1,1817
107	31,821	4,0081	256,53	1,1817
108	31,861	4,085	256,61	1,1817
109	31,903	4,1633	256,7	1,1817
110	31,945	4,2432	256,79	1,1817
111	31,988	4,3247	256,88	1,1817
112	32.032	4,4081	256.97	1.1817
113	32.077	4,4938	257.07	1.1817
	, ,	n5	, ,	,
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
103	103	3.7135	412.69	1.6384
104	104	3.7853	415.91	1.6466
105	105	3.8583	419.25	1.6552
106	106	3,9325	422.73	1.664
107	107	4 0081	426.4	1 6733
107	107	4,0001	/30.31	1 6832
109	109	4,003	430,51	1,0032
105	105	4,1033	434,33	1,0555
110	110	4,2432	433,22	1,7058
111	111	4,3247	444,00	1,7195
112	112	4,4081	451,59	1,7371
113	113	4,4938	403,9	1,7085
ther	+ [°C]		$b \left[l_{\rm el} / l_{\rm ec} \right]$	
102	102	p [IVIPa]	п [кл/кg] гээ оэ	5 [KJ/ KBK]
103	103	3,/135	532,93	1,9581
104	104	3,/853	531,54	1,9532
105	105	3,8583	529,97	1,9479
106	106	3,9325	528,17	1,9421
10/	107	4,0081	526,11	1,9356
108	108	4,085	523,71	1,9283
109	109	4,1633	520,84	1,9198
110	110	4,2432	517,31	1,9096
111	111	4,3247	512,73	1,8967
112	112	4,4081	506,12	1,8787
113	113	4,4938	492,61	1,8429

Tabela Z. 50. Parametry czynnika R152a w poszczególnych punktach siłowni z obiegiem podkrytycznym

	ametry	czymnika Amomak w	poszczegomych punkte	ich showin z obiegiem pe	Jaki yeyezhiyin
			n1	1	1
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
	122	122	9,4478	1966,3	5,7347
	123	123	9,6192	1969,8	5,7347
	124	124	9,7934	1973,4	5,7347
	125	125	9,9702	1977	5,7347
	126	126	10,15	1980,5	5,7347
	127	127	10,332	1984,1	5,7347
	128	128	10,518	1987,7	5,7347
	129	129	10,706	1991,2	5,7347
	130	130	10,898	1994,8	5,7347
	131	131	11,092	1998,4	5,7347
	132	132	11,29	2002	5,7347
			n2		
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
122-132		30	1,1672	1629,3	5,7347
			n3		
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
122-132		30	1,1672	484,91	1,9597
			n4s		
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
•	122	32,251	9,4478	498,78	1,9597
	123	32,296	9,6192	499,07	1,9597
	124	32.343	9,7934	499.36	1.9597
	125	32.389	9,9702	499.65	1.9597
	126	32,437	10.15	499,95	1,9597
	127	32,137	10 332	500.26	1 9597
	128	32,100	10,532	500,20	1 9597
	120	32,534	10,310	500,88	1 9597
	120	32,585	10,700	501,00	1 9597
	130	32,034	10,050	501,2	1,5557
	131	32,085	11,032	501,32	1,9597
	152	52,750	n5	501,05	1,5557
tnar		+ [°C]	n [MPa]	h [k]/kg]	s [k]/kgK]
tpai	122	122		1021 7	3 [10] / 1660
	122	122	9,4470	1031,7	3,4005
	123	123	9,0192	1041,0	3,4307
	124	124	9,7934	1051,9	2 5 4 1 7
	125	125	9,9702 10.1E	1002,8	3,5417
	120	120	10,13	10/4,4	3,5090
	127	127	10,552	1007	3,3990
	120	120	10,516	1100,8	3,0327
	129	129	10,700	1110,4	3,0702
	130	130	10,898	1155,2	3,7133
	131	131	11,092	1100,2	3,7757
	132	132	11,29	1206,2	3,8876
		+ [90]	[]D	h []]	- fl-1/11/1
tpar	122	t[L]	p [MPa]	n [kJ/kg]	
	122	122	9,4478	14/8,/	4,5982
	123	123	9,6192	1470,6	4,5737
	124	124	9,7934	1461,8	4,54//
	125	125	9,9702	1452,3	4,5199
	126	126	10,15	1441,8	4,4899
	127	127	10,332	1430,1	4,457
	128	128	10,518	1416,8	4,4205
	129	129	10,706	1401,3	4,3787
	130	130	10,898	1382,5	4,3287
	131	131	11,092	1357,5	4,2638
	132	132	11,29	1314,8	4,1556

|--|
ZAŁĄCZNIK 3: PARAMETRY CZYNNIKA ROBOCZEGO W POSZCZEGÓLNYCH PUNKTACH ANALOGICZNEJ SIŁOWNI Z OBIEGIEM PODKRYTYCZNYM (DLA CZYNNIKA SUCHEGO)

W załączniku w tabelach Z.52 – Z.57 podano parametry czynników suchych w poszczególnych punktach układu analogicznej siłowni z obiegiem podkrytycznym wyznaczone z wykorzystaniem bazy danych czynników termodynamicznych REFPROP 9.0.

	anictry		poszczegomych punktu	ch showin z obiegiem po	akiytycznym
			n1		
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
	84	84	2,7324	234,42	0,73373
	85	85	2,7879	233,98	0,73177
	86	86	2,8444	233,45	0,72956
	87	87	2,9018	232,8	0,72706
	88	88	2,9602	232,02	0,72422
	89	89	3,0197	231,07	0,72093
	90	90	3,0803	229,9	0,71707
	91	91	3,1421	228,43	0,71242
	92	92	3,205	226,52	0,70658
	93	93	3,2693	223,84	0,6987
	94	94	3,3351	219,37	0,68599
			n2		
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
141-151		30	0,78351	218,33	0,74599
			n2s		·
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
-	84	30	0,78351	214,61	0,73373
	85	30	0,78351	214,02	0,73177
	86	30	0,78351	213,35	0,72956
	87	30	0.78351	212.59	0.72706
	88	30	0.78351	211.73	0.72422
	89	30	0.78351	210.73	0.72093
	90	30	0 78351	209.56	0,71707
	91	30	0 78351	208,15	0 71242
	92	30	0 78351	206,19	0,71242
	93	30	0 78351	203,99	0.6987
	94	30	0,78351	200,55	0.68599
	54	50	n3	200,14	0,00000
tnar		t [°C]	n [MPa]	h [k]/kg]	s[k]/kgK]
141-151		30	0 78351	77 09	0 28009
141 151		50	n4s	11,05	0,20003
tnar		t [°C]	n [MPa]	h [k]/kg]	s [k]/kgK]
tpui	84	31 386	2 7324	78 898	0 28009
	85	31,300	2,7324	78,979	0,28009
	86	31,424	2,7675	79,002	0.28009
	87	31,103	2,9018	79,054	0.28009
	88	31,502	2,5010	79,094	0,28009
	89	31,542	3 0197	79,163	0,28009
	90	31,502	3 0803	70,103	0,28009
	01	31,625	3,0003	79,215	0,28009
	91	31,003	3,1421	79,270	0,28009
	02	21 751	2 2602	79,334	0,28009
	93	21,731	3,2033	79,393	0,28009
	94	51,795	5,5551	79,454	0,28009
toor		+ [%]		h [k]/ka]	c [k]/kgK]
траг	0.1	ι[C] 04		16E 24	5 [KJ/ KgK]
	04 07	04 07	2,7324	105,24	0,34003
	85	85	2,7879	167,39	0,54583
	86	86	2,8444	169,6	0,55178
	8/	87	2,9018	1/1,88	0,55792
	88	88	2,9602	1/4,25	0,56427
	89	89	3,0197	176,74	0,57091
	90	90	3,0803	179,37	0,57792
	91	91	3,1421	182,2	0,58546
	92	92	3,205	185,34	0,5938
	93	93	3,2693	189	0,60356
	94	94	3,3351	193,96	0,6168

|--|

		n1		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
91	91	2,3463	369,71	1,5061
92	92	2,3954	369,62	1,5053
93	93	2,4454	369,46	1,5044
94	94	2,4962	369,23	1,5033
95	95	2,5479	368,9	1,5019
96	96	2,6006	368,46	1,5002
97	97	2.6542	367.88	1.4982
98	98	2.7089	367.08	1.4956
99	99	2.7646	365.97	1.4922
100	100	2,8216	364,32	1,4874
101	101	2,88	361.34	1.479
		n2	,-	, -
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [k]/kgK]
141-151	30	0.52842	343.35	1.478
		n2s		-/
tpar	t [°C]	p [MPa]	h [k]/kg]	s [k]/kgK]
91	39,454	0.52842	351.99	1.5061
92	39 179	0 52842	351 74	1 5053
93	38 871	0 52842	351,71	1 5044
94	38,494	0 52842	351,10	1 5033
95	38,016	0 52842	350.68	1 5019
96	37 436	0 52842	350.15	1 5002
97	36 755	0 52842	349 53	1 4982
98	35,733	0,52842	349,33	1,4956
99	34 724	0 52842	347.68	1,4922
100	33,12	0,52842	346.2	1,4922
100	30 314	0,52842	343.64	1 479
101	30,311	n3	313,01	1,173
tnar	t [°C]	n [MPa]	h [k]/kg]	s [k]/kgK]
141-151	30	0.52842	234.64	1,1194
1.1.101		n4s	=0.901	-)
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
91	31.066	2.3463	235.95	1.1194
92	31.095	2,3954	235.99	1,1194
93	31,123	2,4454	236.03	1,1194
94	31,152	2,4962	236.06	1,1194
95	31,181	2,5479	236.1	1,1194
96	31,211	2,6006	236.14	1,1194
97	31.242	2.6542	236.18	1,1194
98	31.272	2.7089	236.22	1.1194
99	31.304	2.7646	236.26	1.1194
100	31.336	2.8216	236.3	1.1194
101	31.369	2.88	236.34	1.1194
	,	n5		_/
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
91	91	2.3463	318.15	1.3645
92	92	2.3954	319.93	1.3693
93	93	2.4454	321.75	1.3741
94	94	2,4962	323.64	1.3791
95	95	2.5479	325.59	1.3843
96	96	2.6006	327.63	1.3896
97	97	2.6542	329.77	1.3953
98	98	2.7089	332.07	1.4013
90	90	2,7646	334.6	1 4079
100	100	2,8216	337.52	1.4155
101	101	2.88	341.35	1.4256
	-01	_,00	0,00	_,:_00

Tabela Z. 53. Parametry czynnika R227ea w poszczególnych punktach układu siłowni z obiegiem podkrytycznym

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	tpar t (°C) p (MPa) h (U/kg) s (U/kgK) 105 105 2,262 373,21 1,5071 107 107 2,3602 373,21 1,5071 109 109 2,4555 372,23 1,5063 109 109 2,4555 372,53 1,5062 110 110 2,5064 372,09 1,5071 111 111 2,5574 369,32 1,4944 113 113 2,6574 369,32 1,4944 114 114 2,107 367,29 1,4889 115 115 2,7652 362,76 1,4789 141-151 30 0,36556 352,95 1,5071 141-151 30 0,36556 352,295 1,5071 106 51,425 0,36556 352,295 1,5071 107 51,431 0,36556 352,245 1,5071 108 80,79 0,36556 352,245 1,5071			11-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	105	105	2,2682	373,21	1,5076
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	106	106	2,3138	373,16	1,5071
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	107	107	2,3602	373.04	1.5063
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	108	108	2,4074	372.84	1,5054
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	109	109	2 4555	372 53	1 5042
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	110	110	2,1000	372,09	1 5027
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	110	110	2,5045	372,03	1,5027
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	111	111	2,0040	370.6	1 /981
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	112	112	2,0034	369.32	1 /9//
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	113	115	2,0374	367.29	1 / 1 889
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	115	114	2,7107	367,25	1,4005
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	115	115	2,7032	502,70	1,4705
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	thar	+ [°C]	n [MDa]	h [k]/ka]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1/1 1E1	20		11 [KJ/Kg]	5 [KJ/ KgK]
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	141-151	50	0,50550	554,07	1,4494
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	thar	+ [%C]	[][25	h [k]/ka]	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	tpar 105	[[[]]			5 [KJ/ KgK]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	105	51,625	0,30550	352,95	1,5076
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	106	51,435	0,36556	352,79	1,50/1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	107	51,131	0,36556	352,53	1,5063
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	108	50,79	0,36556	352,24	1,5054
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	109	50,336	0,36556	351,85	1,5042
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	110	49,768	0,36556	351,36	1,5027
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	111	49,012	0,36556	350,72	1,5007
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	112	48,031	0,36556	349,88	1,4981
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	113	46,638	0,36556	348,7	1,4944
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	114	44,574	0,36556	346,94	1,4889
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	n3 tpar t [°C] p [MPa] h [kl/kg] s [kl/kgK] 141-151 30 0,36556 232,72 1,1131 n4s tpar t [°C] p [MPa] h [kl/kg] s [kl/kgK] 105 30,975 2,2682 234,02 1,1131 106 30,997 2,3138 234,05 1,1131 107 31,02 2,3602 234,08 1,1131 108 31,043 2,4074 234,11 1,1131 109 31,067 2,4555 234,14 1,1131 110 31,091 2,5045 234,21 1,1131 111 31,14 2,6054 234,24 1,1131 1111 31,14 2,6054 234,24 1,1131 1112 31,14 2,6054 234,24 1,1131 1113 31,166 2,6574 234,28 1,1131 1114 31,218 2,7652 234,35 1,1131	115	40,102	0,36556	343,16	1,4769
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	n3		
141-151300,36556232,721,1131n4st [°C]p [MPa]h [kl/kg]s [kl/kgK]10530,9752,2682234,021,113110630,9972,3138234,051,113110731,022,3602234,081,113110831,0432,4074234,111,113110931,0672,4555234,141,113111031,0912,5045234,171,113111131,1152,5545234,241,113111131,1152,5545234,241,113111131,1282,6054234,241,113111331,1662,6574234,281,113111431,912,7107234,311,113111531,2182,7652234,351,11311161052,2682329,211,39131061062,3138330,931,39571071072,3602332,691,40021081082,4074334,521,40491091092,4555336,421,41481101102,5045338,421,4148	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	tnar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
n4stpart [°C] p [MPa]h [kJ/kg]s [kJ/kgK]10530,9752,2682234,021,113110630,9972,3138234,051,113110731,022,3602234,081,113110831,0432,4074234,111,113110931,0672,4555234,141,113111031,0912,5045234,171,113111131,1152,5545234,211,113111131,1152,5545234,241,113111131,1662,6574234,281,113111131,1282,6574234,311,1131111531,2182,7107234,311,1131111631,2182,7652234,351,11311117110510052,2682329,211,39131118101610062,3138330,931,3957110610062,3138330,931,3957110710072,3602332,691,4002110810082,4074334,521,4049110910092,4555336,421,4148110111102,5045338,421,4148	n4s tpar t [°C] p [MPa] h [kl/kg] s [kl/kgK] 105 30,975 2,2682 234,02 1,1131 106 30,997 2,3138 234,05 1,1131 107 31,02 2,3602 234,08 1,1131 108 31,043 2,4074 234,11 1,1131 109 31,067 2,4555 234,14 1,1131 110 31,091 2,5045 234,21 1,1131 111 31,167 2,5545 234,21 1,1131 111 31,141 2,6054 234,22 1,1131 111 31,145 2,5545 234,24 1,1131 111 31,146 2,6054 234,28 1,1131 111 31,146 2,6574 234,28 1,1131 111 31,218 2,7652 234,35 1,1131 111 31,218 2,7652 234,35 1,3113 1105 105 2,2682	tpui				
tpart [°C]p [MPa]h [kl/kg]s [kl/kgK]10530,9752,2682234,021,113110630,9972,3138234,051,113110731,022,3602234,081,113110831,0432,4074234,111,113110931,0672,4555234,141,113111031,0912,5045234,171,113111131,1152,5545234,211,113111231,142,6054234,241,113111331,1662,6574234,281,113111431,1912,7107234,311,113111531,2182,7652234,351,11311161062,3138330,931,39131071072,3602332,691,40021081082,4074334,521,40491091092,4555336,421,41481101102,5045338,421,4148	tpart [°C]p [MPa]h [k/kg]s [k/kgK]10530,9752,2682234,021,113110630,9972,3138234,051,113110731,022,3602234,081,113110831,0432,4074234,111,113110931,0672,4555234,141,113111031,0912,5045234,171,113111131,1152,5545234,211,113111231,142,6054234,241,113111331,1662,6574234,281,113111431,1912,7107234,311,113111531,2182,7652234,351,11311161051052,2682329,211,39131061062,3138330,931,39571071072,3602332,691,40021081082,4074334,521,40491091092,5545336,421,40491101102,5045338,421,41481111112,5645340,561,42021121122,6054242,881,4148	141-151	30	0,36556	232,72	1,1131
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	141-151	30	0,36556 n4s	232,72	1,1131
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	141-151 tpar	30 t [°C]	0,36556 n4s p [MPa]	232,72 h [kJ/kg]	1,1131 s [kJ/kgK]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	141-151 tpar 105	30 t [°C] 30,975	0,36556 n4s p [MPa] 2,2682	232,72 h [kJ/kg] 234,02	1,1131 s [kJ/kgK] 1,1131
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	141-151 tpar 105 106	30 t [°C] 30,975 30,997	0,36556 n4s p [MPa] 2,2682 2,3138	232,72 h [kJ/kg] 234,02 234,05	1,1131 s [kJ/kgK] 1,1131 1,1131
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	141-151 tpar 105 106 107	30 t [°C] 30,975 30,997 31,02	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602	232,72 h [kJ/kg] 234,02 234,05 234,08	1,1131 s [kJ/kgK] 1,1131 1,1131 1,1131
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	141-151 tpar 105 106 107 108	30 t [°C] 30,975 30,997 31,02 31,043	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11	1,1131 s [kJ/kgK] 1,1131 1,1131 1,1131 1,1131
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	141-151 tpar 105 106 107 108 109	30 t [°C] 30,975 30,997 31,02 31,043 31,067	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,14	1,1131 s [kJ/kgK] 1,1131 1,1131 1,1131 1,1131 1,1131
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	141-151 tpar 105 106 107 108 109 110	30 t [°C] 30,975 30,997 31,02 31,043 31,067 31,091	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,11 234,14 234,17	1,1131 s [kJ/kgK] 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	141-151 tpar 105 106 107 108 109 110 111	30 t [°C] 30,975 30,997 31,02 31,043 31,067 31,091 31,115	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5045	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,11 234,14 234,17 234,21	1,1131 s [kJ/kgK] 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	114 31,191 2,7107 234,31 1,1131 115 31,218 2,7652 234,35 1,1131 n5 tpar t [°C] p [Mpa] h [kJ/kg] s [kJ/kgK] 105 105 2,2682 329,21 1,3913 106 106 2,3138 330,93 1,3957 107 107 2,3602 332,69 1,4002 108 108 2,4074 334,52 1,4049 109 109 2,5045 338,42 1,4148 111 111 2,5545 340,56 1,4202 112 112 2,6054 342,88 1,4261	141-151 tpar 105 106 107 108 109 110 111 112	30 t [°C] 30,975 30,997 31,02 31,043 31,067 31,091 31,115 31,14	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5045 2,5545 2,6054	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,11 234,14 234,17 234,21 234,24	1,1131 s [kJ/kgK] 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131
115 31,218 2,7652 234,35 1,1131 n5 tpar t [°C] p [Mpa] h [kJ/kg] s [kJ/kgK] 105 105 2,2682 329,21 1,3913 106 106 2,3138 330,93 1,3957 107 107 2,3602 332,69 1,4002 108 108 2,4074 334,52 1,4049 109 109 2,5045 336,42 1,4097 110 110 2,5045 338,42 1,4148	115 31,218 2,7652 234,35 1,1131 n5 tpar t [°C] p [Mpa] h [kJ/kg] s [kJ/kgK] 105 105 2,2682 329,21 1,3913 106 106 2,3138 330,93 1,3957 107 107 2,3602 332,69 1,4002 108 108 2,4074 334,52 1,4049 109 109 2,5045 336,42 1,4097 110 110 2,5545 340,56 1,4202 112 112 2,6054 342,88 1,4261	141-151 tpar 105 106 107 108 109 110 111 111 112 113	30 t [°C] 30,975 30,997 31,02 31,043 31,043 31,067 31,091 31,115 31,114 31,166	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5045 2,5545 2,6054 2,6574	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,11 234,14 234,17 234,21 234,24 234,28	1,1131 s [kJ/kgK] 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131
n5 tpar t [°C] p [Mpa] h [kJ/kg] s [kJ/kgK] 105 105 2,2682 329,21 1,3913 106 106 2,3138 330,93 1,3957 107 107 2,3602 332,69 1,4002 108 108 2,4074 334,52 1,4049 109 109 2,4555 336,42 1,4097 110 110 2,5045 338,42 1,4148	$\begin{array}{ c c c c c c c } &n5 \\\hline tpar & t [^{\circ}C] & p [Mpa] & h [kl/kg] & s [kl/kgK] \\\hline tpar & t [^{\circ}C] & p [Mpa] & h [kl/kg] & s [kl/kgK] \\\hline 105 & 105 & 2,2682 & 329,21 & 1,3913 \\\hline 106 & 106 & 2,3138 & 330,93 & 1,3957 \\\hline 107 & 107 & 2,3602 & 332,69 & 1,4002 \\\hline 108 & 108 & 2,4074 & 334,52 & 1,4049 \\\hline 108 & 108 & 2,4074 & 334,52 & 1,4049 \\\hline 109 & 109 & 2,4555 & 336,42 & 1,4097 \\\hline 110 & 110 & 2,5045 & 338,42 & 1,4148 \\\hline 111 & 111 & 2,5545 & 340,56 & 1,4202 \\\hline 112 & 112 & 2,6054 & 342,88 & 1,4261 \\\hline \end{array}$	141-151 tpar 105 106 107 108 109 110 111 112 113 114	30 t [°C] 30,975 30,997 31,02 31,043 31,067 31,115 31,115 31,14 31,166 31,191	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5545 2,5545 2,5054 2,6054 2,6574 2,7107	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,11 234,14 234,17 234,21 234,21 234,22 234,28 234,31	1,1131 s [kJ/kgK] 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131
tpart [°C]p [Mpa]h [kJ/kg]s [kJ/kgK]1051052,2682329,211,39131061062,3138330,931,39571071072,3602332,691,40021081082,4074334,521,40491091092,4555336,421,40971101102,5045338,421,4148	tpart [°C]p [Mpa]h [kJ/kg]s [kJ/kgK]1051052,2682329,211,39131061062,3138330,931,39571071072,3602332,691,40021081082,4074334,521,40491091092,4555336,421,40971101102,5045338,421,41481111112,5545340,561,42021121122,6054342,881,4261	141-151 tpar 105 106 107 108 109 110 111 112 113 114 115	30 t [°C] 30,975 30,997 31,02 31,043 31,067 31,091 31,115 31,115 31,14 31,166 31,191 31,218	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5045 2,5545 2,6054 2,6574 2,7107 2,7652	232,72 h [kJ/kg] 234,02 234,05 234,05 234,08 234,11 234,14 234,14 234,17 234,21 234,24 234,22 234,23	1,1131 s [kJ/kgK] 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131
1051052,2682329,211,39131061062,3138330,931,39571071072,3602332,691,40021081082,4074334,521,40491091092,4555336,421,40971101102,5045338,421,4148	1051052,2682329,211,39131061062,3138330,931,39571071072,3602332,691,40021081082,4074334,521,40491091092,4555336,421,40971101102,5045338,421,41481111112,5545340,561,42021121122,6054342,881,4261	141-151 tpar 105 106 107 108 109 110 111 112 113 114 115	30 t [°C] 30,975 30,977 31,02 31,043 31,067 31,091 31,105 31,115 31,14 31,166 31,191 31,218	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5545 2,5545 2,6054 2,6574 2,6574 2,7107 2,7652 n5	232,72 h [kJ/kg] 234,02 234,05 234,05 234,08 234,11 234,14 234,14 234,17 234,24 234,24 234,28 234,31 234,35	1,1131 s [kJ/kgK] 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131
106 106 2,3138 330,93 1,3957 107 107 2,3602 332,69 1,4002 108 108 2,4074 334,52 1,4049 109 109 2,4555 336,42 1,4049 110 110 2,5045 338,42 1,4148	1061062,3138330,931,39571071072,3602332,691,40021081082,4074334,521,40491091092,4555336,421,40971101102,5045338,421,41481111112,5545340,561,42021121122,6054342,881,4261	141-151 tpar 105 106 107 108 109 110 111 111 112 113 114 115 tpar	30 t [°C] 30,975 30,997 31,02 31,043 31,043 31,067 31,091 31,191 31,14 31,166 31,191 31,218 t [°C]	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5045 2,5545 2,6054 2,6574 2,6574 2,7107 2,7652 n5 p [Mpa]	232,72 h [kJ/kg] 234,02 234,05 234,05 234,08 234,11 234,14 234,14 234,14 234,24 234,24 234,28 234,31 234,35 h [kJ/kg]	1,1131 s [kJ/kgK] 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131
107 107 2,3602 332,69 1,4002 108 108 2,4074 334,52 1,4049 109 109 2,4555 336,42 1,4097 110 110 2,5045 338,42 1,4148	1071072,3602332,691,40021081082,4074334,521,40491091092,4555336,421,40971101102,5045338,421,41481111112,5545340,561,42021121122,6054342,881,4261	141-151 tpar 105 106 107 108 109 110 111 112 113 114 115 tpar 105 107 110 111 112 113 114 115 115 117 118 119 1105	30 t [°C] 30,975 30,997 31,02 31,043 31,067 31,091 31,115 31,115 31,14 31,166 31,191 31,218 t [°C] 105	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5045 2,5545 2,5054 2,6054 2,6574 2,7107 2,7652 n5 p [Mpa]	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,14 234,14 234,17 234,21 234,24 234,28 234,31 234,35 h [kJ/kg] 329,21	1,1131 s [kJ/kgK] 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131
108 108 2,4074 334,52 1,4049 109 109 2,4555 336,42 1,4097 110 110 2,5045 338,42 1,4148	108 108 2,4074 334,52 1,4049 109 109 2,4555 336,42 1,4097 110 110 2,5045 338,42 1,4148 111 111 2,5545 340,56 1,4202 112 112 2,6054 342,88 1,4261	141-151 tpar 105 106 107 108 109 110 111 112 113 114 115 tpar 105 106 110 111 112 113 114 105 106 106	30 t [°C] 30,975 30,997 31,02 31,043 31,067 31,105 31,115 31,115 31,115 31,115 31,115 31,115 31,115 31,121 31,1218 t [°C] 105 106	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5045 2,5545 2,6054 2,6574 2,6574 2,7107 2,7652 n5 p [Mpa] 2,2682 2,3138	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,14 234,14 234,17 234,21 234,24 234,24 234,23 234,31 234,35 h [kJ/kg] 329,21 330,93	s [kJ/kgK] 1,1131 1,3913 1,3957
109 109 2,4555 336,42 1,4097 110 110 2,5045 338,42 1,4148	109 109 2,4555 336,42 1,4097 110 110 2,5045 338,42 1,4148 111 111 2,5545 340,56 1,4202 112 112 2,6054 342,88 1,4261	141-151 tpar 105 106 107 108 109 110 111 112 113 114 115 tpar 105 106 117 118 119 110 111 112 113 114 115 116 117 117 118 119 110 110 111 112 113 114 115 116 117 118 119 119 110 110 110 110 110 111 111 111 110 110 110	30 t [°C] 30,975 30,997 31,02 31,043 31,067 31,091 31,105 31,115 31,141 31,141 31,141 31,141 31,191 31,218 t [°C] 1005 1006 107	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5045 2,5545 2,5045 2,6054 2,6574 2,7107 2,7652 n5 p [Mpa] 2,2682 2,3138 2,3602	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,14 234,14 234,17 234,21 234,24 234,24 234,28 234,31 234,35 h [kJ/kg] 329,21 330,93 332,69	1,1131 s [kJ/kgK] 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131 1,1131
110 110 2,5045 338,42 1,4148	110 110 2,5045 338,42 1,4148 111 111 2,5545 340,56 1,4202 112 112 2,6054 342,88 1,4261	141-151 tpar 105 106 107 108 109 110 111 112 113 114 115 tpar 105 106 117 118 119 110 111 112 113 114 115 106 107 108	30 t [°C] 30,975 30,997 31,02 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,044 31,041 31,115 31,115 31,114 31,115 31,115 31,115 31,115 31,1218 t [°C] 105 106 107 108	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5045 2,5545 2,5045 2,5545 2,6054 2,6574 2,7107 2,7652 n5 p [Mpa] 2,2682 2,3138 2,3602 2,4074	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,14 234,14 234,17 234,21 234,24 234,24 234,28 234,31 234,35 h [kJ/kg] 329,21 330,93 332,69 334,52	1,1131 s [kJ/kgK] 1,1131
	111 111 2,5545 340,56 1,4202 112 112 2,6054 342,88 1,4261	141-151 tpar 105 106 107 108 109 110 111 112 113 114 115 tpar 106 107 113 114 115 106 107 108 109 107 108 109	30 t [°C] 30,975 30,997 31,02 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,044 31,041 31,115 105 106 <	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5545 2,5545 2,5545 2,5545 2,6054 2,6574 2,7107 2,7652 n5 p [Mpa] 2,2682 2,3138 2,3602 2,4074 2,4555	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,14 234,14 234,17 234,21 234,24 234,24 234,28 234,35 h [kJ/kg] 329,21 330,93 332,69 334,52 336,42	1,1131 s [kJ/kgK] 1,1131
111 111 2,5545 340,56 1,4202	112 112 2 6054 242 88 1 4261	141-151 tpar 105 106 107 108 109 110 111 112 113 114 115 tpar 106 107 113 114 115 106 107 108 109 109 1010	t [°C] 30,975 30,997 31,02 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,104 31,115 31,115 31,114 31,1166 31,191 31,218 t [°C] 105 106 107 108 109 110 110	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5045 2,5545 2,5045 2,5045 2,6054 2,6574 2,7107 2,7652 n5 p [Mpa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,11 234,14 234,17 234,21 234,21 234,24 234,24 234,28 234,31 234,35 h [kJ/kg] 329,21 330,93 332,69 334,52 336,42 338,42	1,1131 s [kJ/kgK] 1,1131 1,3957 1,4002 1,
112 112 2,6054 342,88 1,4261		141-151 tpar 105 106 107 108 109 110 111 112 113 114 115 tpar 105 106 107 110 111 115 106 107 108 109 110 110 111	t [°C] 30,975 30,997 31,02 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,043 31,105 31,115 31,144 31,166 31,191 31,218 t [°C] 105 106 107 108 109 110 111	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5545 2,5545 2,5545 2,6054 2,6574 2,7107 2,7652 n5 p [Mpa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5545	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,11 234,14 234,17 234,21 234,21 234,24 234,28 234,31 234,35 h [kJ/kg] 329,21 330,93 332,69 334,52 336,42 338,42 338,42 340,56	1,1131 s [kJ/kgK] 1,1131 1,1312 1,3957 1,4002 1,4049 1,4049 1,4049 1,4042 1,4042
	113 113 26574 345 52 1 4229	141-151 tpar 105 106 107 108 109 110 111 112 113 114 115 tpar 106 107 113 114 115 106 107 108 109 110 111 111 112	t [°C] 30,975 30,977 30,997 31,02 31,043 31,043 31,067 31,091 31,105 31,115 31,144 31,166 31,191 31,218 t [°C] 105 106 107 108 109 110 111 111	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5545 2,5054 2,6054 2,6574 2,6574 2,7107 2,7652 n5 p [Mpa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,11 234,14 234,17 234,21 234,21 234,24 234,28 234,31 234,35 h [kJ/kg] 329,21 330,93 332,69 334,52 336,42 338,42 338,42 340,56 342,88	1,1131 s [kJ/kgK] 1,1131 1,3957 1,4002 1,
113 113 2,6574 345,52 1,4328		141-151 tpar 105 106 107 108 109 110 111 112 113 114 115 tpar 105 106 117 118 109 101 102 103 104 105 106 107 108 109 110 111 112 113	t [°C] 30,975 30,977 30,997 31,02 31,043 31,043 31,067 31,091 31,105 31,115 31,144 31,166 31,191 31,218 t [°C] 105 106 107 108 109 110 111 112 113	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5545 2,5545 2,6054 2,6574 2,6574 2,6574 2,7107 2,7652 n5 p [Mpa] 2,2682 2,3138 2,3602 2,3138 2,3602 2,4074 2,4555 2,5045 2,5545 2,5545 2,5654	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,14 234,14 234,17 234,21 234,24 234,28 234,31 234,35 h [kJ/kg] 329,21 330,93 332,69 334,52 336,42 338,42 340,56 342,88 345,52	1,1131 s [kJ/kgK] 1,1131 1,14002 1,4002 1,4003 1,4049 1,4041 1,4202
113 113 2,6574 345,52 1,4328 114 114 2,7107 348,77 1,441	113 2,074 343,52 1,4326 114 114 2,7107 348,77 1,441	141-151 tpar 105 106 107 108 109 110 111 112 113 114 115 107 108 110 111 112 113 114 105 106 107 108 109 1010 102 111 112 111 112 113 114	t [°C] 30,975 30,977 30,997 31,02 31,043 31,043 31,067 31,091 31,105 31,115 31,144 31,166 31,191 31,218 t [°C] 105 106 107 108 109 110 111 112 113 114	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5045 2,5545 2,6054 2,6574 2,6574 2,7107 2,7652 n5 p [Mpa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5545 2,5045 2,5545	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,14 234,14 234,17 234,21 234,24 234,28 234,31 234,35 h [kJ/kg] 329,21 330,93 332,69 334,52 336,42 338,42 338,42 340,56 342,88 345,52 348,77	1,1131 s [kJ/kgK] 1,1131 1,4002 1,
<u>113</u> <u>113</u> <u>2,6574</u> <u>345,52</u> <u>1,4328</u>	1,4320 Line Cart Cart Cart Cart Cart Cart Cart Cart	141-151 tpar 105 106 107 108 109 110 111 112 113 114 115 107 108 111 112 113 114 115 108 109 106 107 108 109 1010 102 103 104 105 106 107 108 109 110 111 112 113	t [°C] 30,975 30,997 31,02 31,043 31,043 31,067 31,091 31,115 31,144 31,166 31,191 31,116 31,191 31,218 t [°C] 105 106 107 108 109 110 111 1112 113	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5045 2,5545 2,5045 2,6054 2,6574 2,7107 2,7652 n5 p [Mpa] 2,2682 2,3138 2,3602 2,3138 2,3602 2,4074 2,4555 2,5045 2,5545 2,5545 2,5054	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,14 234,17 234,21 234,21 234,24 234,24 234,23 234,31 234,35 h [kJ/kg] 329,21 330,93 332,69 334,52 336,42 338,42 338,42 340,56 342,88 345,52	1,1131 s [kJ/kgK] 1,1131 1,1132 1,3913 1,3957 1,4002 1,4007 1,4007 1,4148 1,4261 1,4328
113 113 2,6574 345,52 1,4328 114 114 2,7107 348,77 1,441	113 2,074 343,52 1,4326 114 114 2,7107 348,77 1,441	141-151 tpar 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 111 111 111 111 111 105 106 107 108 109 110 111 112 113 114	t [°C] 30,975 30,997 31,02 31,043 31,043 31,067 31,091 31,115 31,144 31,166 31,191 31,115 1,1191 31,218 t [°C] 105 106 107 108 109 110 111 1112 113 114	0,36556 n4s p [MPa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5045 2,5545 2,6054 2,6574 2,6574 2,7107 2,7652 n5 p [Mpa] 2,2682 2,3138 2,3602 2,4074 2,4555 2,5045 2,5045 2,5545 2,5045 2,5545	232,72 h [kJ/kg] 234,02 234,05 234,08 234,11 234,14 234,14 234,17 234,21 234,24 234,24 234,28 234,31 234,35 h [kJ/kg] 329,21 330,93 332,69 334,52 336,42 338,42 338,42 340,56 342,88 345,52 348,77	1,1131 s [kJ/kgK] 1,1131 1,1132 1,3913 1,3957 1,4002 1,4049 1,4049 1,4049 1,4202 1,4261 1,4328 1,4414

Tabela Z. 54. Parametry czynnika RC318 w poszczególnych punktach układu siłowni z obiegiem podkrytycznym

			n1		
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
	114	114	2,582	417,9	1,6277
	115	115	2,6339	417,49	1,6262
	116	116	2,6868	416,99	1,6244
	117	117	2,7405	416,39	1,6223
	118	118	2,7951	415,66	1,62
	119	119	2,8507	414,79	1,6173
	120	120	2,9072	413,73	1,6142
	121	121	2,9647	412,43	1,6104
	122	122	3,0232	410,8	1,6059
	123	123	3,0828	408,64	1,6
	124	124	3,1433	405,45	1,5917
		1	n2		
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
141-151		30	0.32101	380.23	1.6004
			n2s		,
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
	114	39.297	0.32101	388.62	1.6277
	115	38,779	0.32101	388.15	1.6262
	116	38,158	0.32101	387.59	1.6244
	117	37,435	0.32101	386.94	1,6223
	118	36,644	0.32101	386.22	1.62
	119	35,719	0.32101	385.39	1.6173
	120	34 66	0 32101	384.43	1 6142
	120	33 365	0,32101	383.26	1,6104
	121	31,839	0,32101	381.89	1,0104
	123	30	0,32101	380.09	1.6
	123	30	0,32101	377 58	1 5917
			n3	077,00	2,0021
tpar		t [°C]	n [MPa]	h [k]/kg]	s [k]/køK]
141-151		30	0.32101	237.28	1.1289
			n4s		_,
tpar		t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
	114	31.013	2.582	238.96	1.1289
	115	31.035	2.6339	239	1.1289
	116	31.058	2.6868	239.04	1.1289
	117	31.082	2,7405	239.08	1.1289
	118	31,106	2,7951	239,12	1,1289
	119	31.13	2.8507	239,16	1,1289
	120	31,154	2,9072	239.2	1.1289
	121	31,179	2,9647	239.24	1,1289
	122	31.205	3.0232	239.28	1.1289
	123	31.23	3.0828	239,33	1,1289
	124	31.257	3,1433	239,33	1,1289
		51,23,	n5	200,07	1,1205
tpar		t [°C]	n [MPa]	h [k]/kg]	s [k]/køK]
tpu.	114	114	2.582	361.71	1.4826
	115	115	2 6339	363 75	1 4877
	116	115	2,6355	365.84	1 4929
	117	110	2,0008	267 00	1 /022
	118	117	2,7403	307,33	1 5038
	110	110	2,7931	272 55	1,5036
	120	119	2,000	275 01	1 5157
	120	120	2,5072	277 65	1,5157
	121	121	2,3047	377,03	1,5222
	172	122	2,0232	300,33 202.0E	1,5293
	123	123	2,0828	200,00	1,03/0
	124	124	3,1433	388,05	1,5478

Tabela Z. 55. Parametry czynnika R236fa w poszczególnych punktach siłowni z obiegiem podkrytycznym

			ten shown z obiegiem po	
		n1		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
124	124	3,0363	685,4	2,3637
125	5 125	3,088	684,81	2,361
126	5 126	3,1404	684,06	2,358
127	/ 127	3,1936	683,09	2,3544
128	3 128	3,2475	681,88	2,3503
129) 129	3,3023	680,36	2,3454
130) 130	3,3578	678,44	2,3396
132	131	3.4142	675.96	2.3324
132	2 132	3.4715	672.64	2.3233
13	133	3,5298	667.88	2,3106
134	134	3 5891	659.61	2 2894
	151	n2	000,01	2,2031
thar	+ [°C]	n [MPa]	h [k]/ka]	c [k]/kgK]
1/1 1E1	20			2 2122
141-151	50	0,40472	594,57	2,3123
	+ [%C]		h [].]/[]	
tpar			n [kJ/kg]	
124	38,56	0,40472	610,36	2,3637
125	38,106	0,40472	609,52	2,361
126	37,603	0,40472	608,59	2,358
127	36,999	0,40472	607,47	2,3544
128	36,313	0,40472	606,2	2,3503
129	35,493	0,40472	604,68	2,3454
130	34,525	0,40472	602,9	2,3396
132	33,326	0,40472	600,69	2,3324
132	2 31,815	0,40472	597,9	2,3233
133	30	0,40472	594,04	2,3106
134	4 30	0,40472	587,62	2,2894
	•	n3		•
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
141-151	30	0,40472	271,24	1,2458
	ł	n4s		
tpar	t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kgK]
124	31.392	3.0363	276.07	1.2458
12'	31,418	3.088	276.16	1.2458
126	31,445	3,1404	276.26	1.2458
12	31 472	3 1936	276 35	1 2458
125	31,112	3 2/175	276,35	1 2/58
120	21 5 28	3,2473	276,45	1 2458
12.	31,520	3,3023	276,55	1,2458
130	21 E04	2,3370	270,03	1 2430
13.	21,384	2,4142 2 /71F	2/0,/0	1,2438
132		3,4715	2/0,80	1,2458
13:	31,643	3,5298	276,97	1,2458
134	4 31,673	3,5891	277,07	1,2458
	. [0.0]	n5	1 51 - (1 - 1	51 - 41
tpar		p [MPa]	h [kJ/kg]	s [kJ/kgK]
124	124	3,0363	552,66	2,0295
125	5 125	3,088	557,01	2,04
126	5 126	3,1404	561,47	2,0509
127	127	3,1936	566,09	2,062
128	3 128	3,2475	570,9	2,0736
129	129	3,3023	575 <u>,</u> 93	2,0857
130	130	3,3578	581,26	2,0985
132	131	3,4142	586,99	2,1123
132	132	3,4715	593,34	2,1275
133	3 133	3,5298	600,76	2,1453
12	124	2 5901	610.92	2 1606

|--|

				n1		
tpar		t [°C]	p [MPa]		h [kJ/kg]	s [kJ/kgK]
1	41	141		3,1693	746,82	2,4991
1	42	142		3,2221	746,19	2,4965
1	43	143		3,2757	745,39	2,4934
1	44	144		3,3301	744,38	2,4899
1	45	145		3,3853	743,11	2,4858
1	46	146		3,4414	741,54	2,4809
1	47	147		3,4983	739,55	2,4752
1	48	148		3,5561	737,01	2,4682
1	49	149		3,6148	733,67	2,4593
1	50	150		3,6746	729,01	2,4474
1	51	151		3,7354	721,52	2,4288
			•	n2		•
tpar		t [°C]	p [MPa]		h [kJ/kg]	s [kJ/kgK]
141-151		30		0,28341	628,06	2,4234
			1	n2s	, ,	, ,
tpar		t [°C]	p [MPa]		h [kJ/kg]	s [kJ/kgK]
1	41	42.667		0.28341	651.49	2.4991
1	42	42.228		0.28341	650.67	2,4965
1	43	41.704		0.28341	649.7	2,4934
1	44	41.113		0.28341	648.59	2,4899
1	45	40.422		0.28341	647.31	2,4858
1	46	39.597		0.28341	645.77	2.4809
1	47	38,638		0.28341	643.99	2,4752
1	48	37,464		0.28341	641.81	2,4682
1	49	35,973		0.28341	639.06	2,4593
1	50	33,987		0.28341	635.39	2,4474
1	51	30,896		0.28341	629,71	2,4288
				n3): -	
tpar		t [°C]	p [MPa]		h [k]/kg]	s [k]/kgK]
141-151		30	p [a]	0.28341	271.76	1.2481
				n4s	,	_/_ ···
tpar		t [°C]	p [MPa]		h [kJ/kg]	s [kJ/kgK]
1	41	31.293	p [e]	3.1693	276.85	1.2481
1	42	31,316		3.2221	276.94	1,2481
1	43	31,339		3.2757	277.04	1,2481
1	44	31 362		3 3301	277.13	1 2481
1	45	31,386		3,3853	277,23	1,2481
1	46	31 411		3 4414	277 33	1 2481
1	47	31 435		3 4983	277,33	1 2481
1	48	31 46		3 5561	277,12	1 2481
1	49	31,486		3.6148	277.63	1,2481
1	50	31 512		3 6746	277,03	1 2481
1	51	31,512		3 7354	277,73	1 2481
	51	51,550	1	n5	277,04	1,2401
tnar		t [°C]	n [MPa]	113	h [k]/kg]	s [k]/kgK]
1	<u>4</u> 1	141	p [ivii u]	3 1693	606 53	2 1604
1	<u>41</u>	141		3 2221	610.99	2,1004
1	/12	142		3 2757	615.6	2,1700
1	ΔΛ	143		3,2737	620.36	2,1015
1	<u>4</u> 5	1/15		2 2822	625,30	2,1920
1	46	145		2 //1/	620,52 620 52	2,2041
1	47	140		3,4414	636 DA	2,2101
1	/12	147		2 5561	610 610	2,2200
1	10	140		2 61/0	042 Слос	2,2420
1	-+9 50	149		2 6716	048,0 גנג איז	2,2378
1	51	150		2 725/	666 JA	2,2/33
1	JL	121		5,7554	000,24	2,2985

Tabela Z. 57. Parametry czynnika Butan w poszczególnych punktach siłowni z obiegiem podkrytycznym

ZAŁĄCZNIK **4: M**ETODYKA OBLICZEŃ WIELKOŚCI CHARAKTERYSTYCZNYCH DLA SIŁOWNI Z OBIEGIEM PODKRYTYCZNYM

Metodyka obliczeń dla obiegu podkrytycznego polegała na wyznaczeniu kalorycznych i termicznych parametrów stanu czynnika roboczego w poszczególnych punktach układu za pomocą bazy danych właściwości termodynamicznych czynników roboczych REFPROP 9.0, oraz wykonaniu obliczeń podstawowych wielkości charakteryzujących pracę siłowni parowej przy założeniu strumienia ciepła doprowadzonego równego co do wartości z wartością strumienia ciepła doprowadzonego dla siłowni z obiegiem nadkrytycznym.

Ponadto założono, że temperatura odparowania czynnika roboczego będzie inna dla każdego czynnika i zależna od jego temperatury krytycznej. Przyjęto, że obliczenia zostaną wykonane dla 11 przypadków temperatury parowania zmieniającej się o $\Delta T = 1$ [°C] do wartości maksymalnej będącej liczbą całkowitą.

Założono, że maksymalne wartości mocy i sprawności oraz odpowiadająca im wartość pracy pompowania uzyskane dla siłowni z obiegiem podkrytycznym będą stanowiły poziom odniesienia przy analizie wyników uzyskanych dla siłowni z obiegiem nadkrytycznym.

Przy obliczaniu wielkości opisujących pracę siłowni z obiegiem podkrytycznym wykorzystano uproszczony model matematyczny nie uwzględniający obliczania parametrów czynnika pośredniczącego, będącego nośnikiem ciepła zasilającego siłownię oraz zaniechano obliczenia dotyczące poszczególnych wymienników wytwornicy pary.

Obliczenia wykonano w oparciu o zależności Z.1 – Z.8.

strumień masowy czynnika roboczego – z zależności (Z.1):

$$\dot{m}_n = \frac{\dot{Q}_d}{(h_{n1} - h_{n4s})}$$
 (Z.1)

moc turbiny w przypadku czynnika suchego – zależności (Z.2):

$$N_t = \dot{m}_n \cdot (h_{n1} - h_{n2s})$$
(Z.2)

moc turbiny w przypadku czynnika mokrego – zależności (Z.3):

$$N_t = \dot{m}_n \cdot (h_{n1} - h_{n2}) \tag{Z.3}$$

moc pompy – z zależności (Z.4):

$$N_p = \dot{m}_n \cdot (h_{n4s} - h_{n3}) \tag{Z.4}$$

moc obiegu C-R – z zależności (Z.5):

$$N_{C-R} = N_t - N_p \tag{Z.5}$$

sprawność obiegu C-R – z zależności (Z.6):

$$\eta_{C-R} = \frac{N_{C-R}}{\dot{Q}_d} \tag{Z.6}$$

 strumień ciepła wyprowadzonego w przypadku czynnika suchego – z zależności (Z.7):

$$\dot{Q}_w = \dot{m}_n \cdot (h_{n2s} - h_{n3})$$
 (Z.7)

 strumień ciepła wyprowadzonego w przypadku czynnika mokrego – z zależności (Z.8):

$$\dot{Q}_w = \dot{m}_n \cdot (h_{n2} - h_{n3})$$
 (Z.8)

ZAŁĄCZNIK 5: WYNIKI OBLICZEŃ WIELKOŚCI CHARAKTERYSTYCZNYCH DLA OBIEGU PODKRYTYCZNEGO

R41								
t _{par}	ṁ _n	Nt	Np	N _{CR}	η	η		
	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]		
34	11,92	41,14	8,82	32,31	0,0129	1,29		
35	11,89	51,35	11,17	40,18	0,0160	1,60		
36	11,85	61,49	13,39	48,10	0,0191	1,91		
37	11,81	71,58	15,83	55,75	0,0222	2,22		
38	11,77	81,60	18,13	63,47	0,0252	2,52		
39	11,74	91,67	20,54	71,13	0,0283	2,83		
40	11,70	101,58	23,05	78,52	0,0312	3,12		
41	11,67	111,53	25,55	85,98	0,0342	3,42		
42	11,63	121,54	28,03	93,51	0,0372	3,72		
43	11,59	131,49	30,61	100,88	0,0401	4,01		
44	11,56	141,48	33,17	108,31	0,0431	4,31		

Tabela Z. 58. Wyniki obliczeń dla podkrytycznego obiegu siłowni ORC z czynnikiem R41

Tabela Z. 59. Wyniki obliczeń dla podkrytycznego obiegu siłowni ORC z czynnikiem R125

R125								
t _{par}	ṁ _n	Nt	N _p	N _{CR}	η	η		
	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]		
56	22,37	194,85	25,28	169,57	0,0674	6,74		
57	22,32	200,91	26,34	174,56	0,0694	6,94		
58	22,28	206,96	27,62	179,33	0,0713	7,13		
59	22,23	212,98	28,90	184,08	0,0732	7,32		
60	22,19	218,76	29,95	188,81	0,0751	7,51		
61	22,14	224,74	31,22	193,52	0,0770	7,70		
62	22,10	230,29	32,49	197,80	0,0787	7,87		
63	22,06	236,05	33,97	202,07	0,0804	8,04		
64	22,02	241,76	35,23	206,53	0,0822	8,22		
65	21,98	247,47	36,70	210,76	0,0838	8,38		
66	21,94	252,94	37,95	214,98	0,0855	8,55		

Tabela Z. 60. Wyniki obliczeń dla podkrytycznego obiegu siłowni ORC z czynnikiem R143a

R143a								
t _{par}	ṁn	Nt	Np	N _{CR}	η	η		
	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]		
62	15,14	231,44	25,88	205,55	0,0818	8,18		
63	15,10	237,29	26,89	210,41	0,0837	8,37		
64	15,07	243,00	28,04	214,96	0,0855	8,55		
65	15,04	248,81	29,03	219,78	0,0874	8,74		
66	15,01	254,46	30,03	224,44	0,0893	8,93		
67	14,98	259,97	31,17	228,80	0,0910	9,10		
68	14,95	265,58	32,15	233,43	0,0929	9,29		
69	14,93	271,04	33,28	237,76	0,0946	9,46		
70	14,90	276,62	34,41	242,21	0,0963	9,63		
71	14,87	282,06	35,68	246,37	0,0980	9,80		
72	14,84	287,46	36,80	250,66	0,0997	9,97		

R32							
t _{par}	ṁ _n	Nt	Np	N _{CR}	η	Η	
	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]	
68	8,65	285,98	25,18	260,80	0,1037	10,37	
69	8,63	292,51	26,07	266,44	0,1060	10,60	
70	8,61	299,01	26,95	272,06	0,1082	10,82	
71	8,59	305,48	27,83	277,65	0,1104	11,04	
72	8,57	311,84	28,70	283,14	0,1126	11,26	
73	8,55	318,25	29,57	288,68	0,1148	11,48	
74	8,52	324,63	30,52	294,11	0,1170	11,70	
75	8,50	330,97	31,38	299,59	0,1192	11,92	
76	8,48	337,37	32,32	305,05	0,1213	12,13	
77	8,46	343,74	33,34	310,40	0,1235	12,35	
78	8,44	350,09	34,36	315,73	0,1256	12,56	

Tabela Z. 61. Wyniki obliczeń dla podkrytycznego obiegu siłowni ORC z czynnikiem R32

Tabela Z. 62. Wyniki obliczeń dla podkrytycznego obiegu siłowni ORC z czynnikiem propylen

Propylen								
t _{par}	ṁ _n	Nt	Np	N _{CR}	η	Н		
	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]		
81	6,81	335,76	33,76	302,00	0,1201	12,01		
82	6,79	340,71	34,65	306,06	0,1217	12,17		
83	6,78	345,59	35,54	310,05	0,1233	12,33		
84	6,77	350,46	36,49	313,97	0,1249	12,49		
85	6,76	355,24	37,37	317,87	0,1264	12,64		
86	6,75	360,08	38,31	321,76	0,1280	12,80		
87	6,73	364,85	39,33	325,52	0,1295	12,95		
88	6,72	369,53	40,27	329,27	0,1310	13,10		
89	6,71	374,27	41,27	333,00	0,1325	13,25		
90	6,70	378,94	42,28	336,66	0,1339	13,39		
91	6,69	383,64	43,27	340,37	0,1354	13,54		

Tabela Z. 63. Wyniki obliczeń dla podkrytycznego obiegu siłowni ORC z czynnikiem R1234yf

R1234yf									
tpar	mn	Nt	Np.	NCR	spr	Spr			
	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]			
84	16,16	320,23	29,23	291,00	0,1158	11,58			
85	16,22	323,67	30,15	293,53	0,1168	11,68			
86	16,28	327,17	31,12	296,05	0,1178	11,78			
87	16,35	330,47	32,11	298,35	0,1187	11,87			
88	16,44	333,58	33,18	300,41	0,1195	11,95			
89	16,55	336,62	34,31	302,31	0,1203	12,03			
90	16,68	339,36	35,52	303,84	0,1209	12,09			
91	16,86	341,82	36,85	304,98	0,1213	12,13			
92	17,08	344,00	38,33	305,67	0,1216	12,16			
93	17,40	345,48	40,08	305,39	0,1215	12,15			
94	17,97	345,52	42,48	303,05	0,1205	12,05			

R134a								
t _{par}	ṁ _n	Nt	Np	N _{CR}	η	η		
	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]		
91	12,59	361,14	26,82	334,32	0,1330	13,30		
92	12,57	365,12	27,54	337,59	0,1343	13,43		
93	12,55	369,10	28,25	340,85	0,1356	13,56		
94	12,54	373,06	28,96	344,10	0,1369	13,69		
95	12,52	377,01	29,66	347,34	0,1382	13,82		
96	12,50	380,84	30,37	350,47	0,1394	13,94		
97	12,48	384,66	31,08	353,58	0,1406	14,06		
98	12,46	388,47	31,78	356,69	0,1419	14,19		
99	12,45	392,28	32,61	359,68	0,1431	14,31		
100	12,43	396,07	33,31	362,76	0,1443	14,43		
101	12,41	399,87	34,13	365,74	0,1455	14,55		

Tabela Z. 64. Wyniki obliczeń dla podkrytycznego obiegu siłowni ORC z czynnikiem R134a

Tabela Z. 65. Wyniki obliczeń dla podkrytycznego obiegu siłowni ORC z czynnikiem R227ea

R227ea								
t _{par}	ṁ _n	Nt	Np	N _{CR}	η	η		
	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]		
91	18,79	333,04	24,62	308,42	0,1227	12,27		
92	18,81	336,38	25,40	310,98	0,1237	12,37		
93	18,84	339,14	26,19	312,95	0,1245	12,45		
94	18,88	342,07	26,81	315,26	0,1254	12,54		
95	18,93	344,92	27,64	317,28	0,1262	12,62		
96	19,00	347,88	28,50	319,38	0,1270	12,70		
97	19,09	350,28	29,40	320,88	0,1276	12,76		
98	19,21	352,72	30,35	322,37	0,1282	12,82		
99	19,38	354,49	31,40	323,09	0,1285	12,85		
100	19,64	355,83	32,60	323,23	0,1286	12,86		
101	20,11	355,98	34,19	321,79	0,1280	12,80		

Tabela Z. 66. Wyniki obliczeń dla podkrytycznego obiegu siłowni ORC z czynnikiem R161

R161								
t _{par}	ṁ _n	Nt	Np	N _{CR}	η	η		
	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]		
92	6,55	391,02	28,74	362,29	0,1441	14,41		
93	6,53	395,77	29,40	366,37	0,1457	14,57		
94	6,52	400,46	30,13	370,32	0,1473	14,73		
95	6,51	405,12	30,86	374,26	0,1489	14,89		
96	6,50	409,77	31,58	378,19	0,1504	15,04		
97	6,49	414,41	32,30	382,10	0,1520	15,20		
98	6,47	419,03	33,08	385,95	0,1535	15,35		
99	6,46	423,64	33,87	389,78	0,1550	15,50		
100	6,45	428,18	34,64	393,54	0,1565	15,65		
101	6,44	432,71	35,42	397,29	0,1580	15,80		
102	6,43	437,21	36,19	401,02	0,1595	15,95		

R152a								
t _{par}	ṁ _n	Nt	Np	N _{CR}	η	Н		
	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]		
103	7,75	424,60	26,33	398,27	0,1584	15,84		
104	7,73	428,56	26,91	401,65	0,1598	15,98		
105	7,72	432,51	27,49	405,03	0,1611	16,11		
106	7,71	436,38	28,06	408,32	0,1624	16,24		
107	7,70	440,32	28,71	411,61	0,1637	16,37		
108	7,68	444,17	29,28	414,89	0,1650	16,50		
109	7,67	448,02	29,92	418,09	0,1663	16,63		
110	7,66	451,85	30,57	421,29	0,1676	16,76		
111	7,65	455,68	31,21	424,47	0,1688	16,88		
112	7,64	459,49	31,85	427,64	0,1701	17,01		
113	7,63	463,37	32,56	430,81	0,1714	17,14		

Tabela Z. 67. Wyniki obliczeń dla podkrytycznego obiegu siłowni ORC z czynnikiem R152a

Tabela Z. 68. Wyniki obliczeń dla podkrytycznego obiegu siłowni ORC z czynnikiem RC318

RC318								
t _{par}	ṁn	Nt	N _p	N _{CR}	η	Н		
	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]		
105	18,06	365,93	23,48	342,45	0,1362	13,62		
106	18,07	368,13	24,04	344,09	0,1369	13,69		
107	18,09	371,06	24,60	346,45	0,1378	13,78		
108	18,12	373,30	25,19	348,11	0,1385	13,85		
109	18,17	375,67	25,80	349,88	0,1392	13,92		
110	18,23	377,87	26,43	351,44	0,1398	13,98		
111	18,32	380,05	27,29	352,76	0,1403	14,03		
112	18,44	382,00	28,02	353,98	0,1408	14,08		
113	18,62	383,88	29,04	354,83	0,1411	14,11		
114	18,91	384,72	30,06	354,66	0,1411	14,11		
115	19,58	383,73	31,91	351,82	0,1399	13,99		

Tabela Z. 69. Wyniki obliczeń dla podkrytycznego obiegu siłowni ORC z czynnikiem R236fa

R236fa								
t _{par}	ṁ _n	Nt	Np	N _{CR}	η	Н		
	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]		
114	14,05	411,37	23,60	387,76	0,1542	15,42		
115	14,08	413,25	24,23	389,02	0,1547	15,47		
116	14,13	415,35	24,86	390,49	0,1553	15,53		
117	14,18	417,56	25,52	392,04	0,1559	15,59		
118	14,24	419,24	26,20	393,04	0,1563	15,63		
119	14,31	420,84	26,91	393,93	0,1567	15,67		
120	14,40	422,05	27,66	394,39	0,1569	15,69		
121	14,52	423,43	28,45	394,98	0,1571	15,71		
122	14,66	423,74	29,31	394,42	0,1569	15,69		
123	14,85	423,92	30,44	393,49	0,1565	15,65		
124	15,14	421,88	31,64	390,24	0,1552	15,52		

Amoniak								
t _{par}	ṁ _n	Nt	Np	N _{CR}	η	η		
	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]		
122	1,71	577,31	23,76	553,55	0,2202	22,02		
123	1,71	582,04	24,20	557,83	0,2219	22,19		
124	1,71	586,87	24,64	562,22	0,2236	22,36		
125	1,70	591,68	25,08	566,60	0,2254	22,54		
126	1,70	596,34	25,54	570,81	0,2271	22,71		
127	1,69	601,12	26,01	575,11	0,2288	22,88		
128	1,69	605,88	26,47	579,40	0,2305	23,05		
129	1,69	610,48	26,94	583,54	0,2321	23,21		
130	1,68	615,20	27,42	587,78	0,2338	23,38		
131	1,68	619,90	27,90	592,00	0,2355	23,55		
132	1,68	624,58	28,39	596,19	0,2371	23,71		

Tabela Z. 70. Wyniki obliczeń dla podkrytycznego obiegu siłowni ORC z czynnikiem amoniak

Tabela Z. 71. Wyniki obliczeń dla podkrytycznego obiegu siłowni ORC z czynnikiem izobutan

Izobutan								
t _{par}	ṁ _n	Nt	Np	N _{CR}	η	η		
	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]		
124	6,14	460,88	29,66	431,21	0,1715	17,15		
125	6,15	463,18	30,27	432,91	0,1722	17,22		
126	6,16	465,26	30,95	434,31	0,1728	17,28		
127	6,18	467,40	31,58	435,81	0,1734	17,34		
128	6,20	469,28	32,31	436,97	0,1738	17,38		
129	6,23	471,16	33,06	438,10	0,1743	17,43		
130	6,26	472,65	33,85	438,80	0,1745	17,45		
131	6,30	474,02	34,76	439,26	0,1747	17,47		
132	6,35	474,75	35,70	439,05	0,1746	17,46		
133	6,43	474,88	36,85	438,03	0,1742	17,42		
134	6,57	473,11	38,31	434,79	0,1729	17,29		

Tabela Z. 72. Wyniki obliczeń dla podkrytycznego obiegu siłowni ORC z czynnikiem but	tan
--	-----

Butan						
t _{par}	ṁ _n	Nt	Np	N _{CR}	η	η
	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]
141	5,35	509,95	27,23	482,72	0,1920	19,20
142	5,36	511,75	27,75	484,00	0,1925	19,25
143	5,37	513,64	28,34	485,30	0,1930	19,30
144	5,38	515,39	28,89	486,50	0,1935	19,35
145	5,40	516,96	29,52	487,44	0,1939	19,39
146	5,42	518,66	30,17	488,49	0,1943	19,43
147	5,44	519,85	30,79	489,06	0,1945	19,45
148	5,47	520,88	31,57	489,31	0,1946	19,46
149	5,51	521,55	32,36	489,19	0,1946	19,46
150	5,57	521,54	33,26	488,28	0,1942	19,42
151	5,67	520,22	34,45	485,77	0,1932	19,32

Rysunek Z. 1. Wykres mocy obiegu siłowni podkrytycznej w zależności od temperatury pary na wlocie do turbiny

Rysunek Z. 2. Wykres sprawności termicznej obiegu siłowni podkrytycznej w zależności od temperatury pary na wlocie do turbiny

Rysunek Z. 3. Wykres mocy pompowania siłowni podkrytycznej w zależności od temperatury pary na wlocie do turbiny

Rysunek Z. 4. Wykres natężenia przepływu masowego czynnika roboczego siłowni podkrytycznej w zależności od temperatury pary na wlocie do turbiny

ZAŁĄCZNIK 6: WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKÓW ROBOCZYCH PRZY ZMIENNEJ

TEMPERATURZE SKRAPLANIA

R41				
	n	1		
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]	
135	18,244	563,79	1,9825	
135	16,601	577,82	2,0307	
135	15,326	590,14	2,0728	
135	14,267	601,23	2,1109	
135	13,342	611,44	2,1464	
135	12,51	620,95	2,18	
	n	2		
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]	
30	4,3039	497,29	1,9825	
25	3,8338	507,24	2,0307	
20	3,4052	514,76	2,0728	
15	3,0145	520,56	2,1109	
10	2,6589	525,08	2,1464	
5	2,3361	528,55	2,18	
	n	2s		
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg∙K]	
30	4,3039	497,29	1,9825	
25	3,8338	507,24	2,0307	
20	3,4052	514,76	2,0728	
15	3,0145	520,56	2,1109	
10	2,6589	525,08	2,1464	
5	2,3361	528,55	2,18	
	n	3		
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg∙K]	
30	4,3039	289,17	1,296	
25	3,8338	271,74	1,2408	
20	3,4052	255,78	1,1893	
15	3,0145	240,83	1,1401	
10	2,6589	226,66	1,0925	
5	2,3361	213,08	1,0459	
	n	4s		
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg∙K]	
49,711	18,244	313,19	1,296	
41,036	16,601	292,94	1,2408	
33,401	15,326	274,94	1,1893	
26,394	14,267	258,4	1,1401	
19,807	13,342	242,91	1,0925	
13,505	12,51	228,18	1,0459	

Tabela Z. 73. Właściwości termodynamiczne czynnika R41 dla wariantu ze zmienna temperaturą skraplania

	R125				
	n	1			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
155	32,748	394,01	1,4817		
155	32,083	394,09	1,4834		
155	31,623	394,15	1,4846		
155	31,246	394,21	1,4856		
155	30,985	394,25	1,4863		
155	30,763	394,29	1,4869		
	n	2			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg∙K]		
30	1,5685	344,71	1,4817		
25	1,3779	343,26	1,4834		
20	1,2052	341,58	1,4846		
15	1,0492	339,71	1,4856		
10	0,90875	337,66	1,4863		
5	0,78288	335,47	1,4869		
	n	2s			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg∙K]		
30	1,5685	344,71	1,4817		
25	1,3779	343,26	1,4834		
20	1,2052	341,58	1,4846		
15	1,0492	339,71	1,4856		
10	0,90875	337,66	1,4863		
5	0,78288	335,47	1,4869		
	n	3			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
30	1,5685	239,91	1,1359		
25	1,3779	232,87	1,1131		
20	1,2052	226,02	1,0904		
15	1,0492	219,32	1,0678		
10	0,90875	212,76	1,0452		
5	0,78288	206,33	1,0226		
n4s					
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
49,975	32,748	264,72	1,1359		
43,478	32,083	256,93	1,1131		
37,196	31,623	249,47	1,0904		
31,068	31,246	242,25	1,0678		
25,076	30,985	235,26	1,0452		
19,184	30,763	228,42	1,0226		

Tabela Z. 74. Właściwości termodynamiczne czynnika R125 dla wariantu ze zmienna temperatura skraplania

R143a				
	n	1		
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]	
155	16,378	449,62	1,6652	
155	15,93	450,63	1,6693	
155	15,524	451,62	1,6732	
155	15,167	452,55	1,6768	
155	14,825	453,5	1,6804	
155	14,507	454,44	1,6839	
	n	2		
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]	
30	1,434	400,07	1,6652	
25	1,2616	398,54	1,6693	
20	1,1052	396,76	1,6732	
15	0,96372	394,77	1,6768	
10	0,83628	392,6	1,6804	
5	0,7219	390,27	1,6839	
	n	2s		
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg∙K]	
30	1,434	400,07	1,6652	
25	1,2616	398,54	1,6693	
20	1,1052	396,76	1,6732	
15	0,96372	394,77	1,6768	
10	0,83628	392,6	1,6804	
5	0,7219	390,27	1,6839	
	n	3		
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg∙K]	
30	1,434	247,56	1,1621	
25	1,2616	239,19	1,1349	
20	1,1052	231,02	1,1078	
15	0,96372	223,04	1,0809	
10	0,83628	215,22	1,0539	
5	0,7219	207,54	1,027	
	n	4s		
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg∙K]	
41,653	16,378	263,31	1,1621	
35,645	15,93	254,38	1,1349	
29,754	15,524	245,69	1,1078	
24,001	15,167	237,27	1,0809	
18,301	14,825	228,99	1,0539	
12,699	14,507	220,92	1,027	

Tabela Z. 75. Właściwości termodynamiczne czynnika R143a dla wariantu ze zmienna temperaturą skraplania

Tabela Z. 76. Właściwości termodynamiczne czynnika R32 dla wariantu ze zmienna temperaturą skraplania

	R32				
	n	1			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
155	10,197	581,35	2,0471		
155	9,7096	586,89	2,0652		
155	9,2367	592,25	2,0831		
155	8,7771	597,42	2,1008		
155	8,3254	602,44	2,1185		
155	7,8795	607,35	2,1363		
	n	2			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
30	1,9275	515,72	2,0471		
25	1,6896	516,51	2,0652		
20	1,4746	516,9	2,0831		
15	1,2808	516,93	2,1008		
10	1,1069	516,66	2,1185		
5	0,95145	516,11	2,1363		
	n	2s			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg∙K]		
30	1,9275	515,72	2,0471		
25	1,6896	516,51	2,0652		
20	1,4746	516,9	2,0831		
15	1,2808	516,93	2,1008		
10	1,1069	516,66	2,1185		
5	0,95145	516,11	2,1363		
	n	3			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
30	1,9275	255,32	1,1881		
25	1,6896	245,6	1,1566		
20	1,4746	236,12	1,1253		
15	1,2808	226,84	1,094		
10	1,1069	217,74	1,0628		
5	0,95145	208,8	1,0314		
	n4	4s			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
36,148	10,197	264	1,1881		
30,492	9,7096	253,85	1,1566		
24,921	9,2367	243,95	1,1253		
19,404	8,7771	234,26	1,094		
13,958	8,3254	224,77	1,0628		
8,5335	7,8795	215,42	1,0314		

	Prop	oylen	
	n	1	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
155	9,6656	692,01	2,3352
155	9,5321	694,55	2,3426
155	9,4001	697,13	2,3501
155	9,2711	699,71	2,3576
155	9,1382	702,44	2,3655
155	9,003	705,26	2,3737
	n	2	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
30	1,305	602,19	2,3352
25	1,1544	598,63	2,3426
20	1,017	594,83	2,3501
15	0,89198	590,79	2,3576
10	0,7786	586,56	2,3655
5	0,6762	582,15	2,3737
	n	2s	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
30	1,305	602,19	2,3352
25	1,1544	598,63	2,3426
20	1,017	594,83	2,3501
15	0,89198	590,79	2,3576
10	0,7786	586,56	2,3655
5	0,6762	582,15	2,3737
	n	3	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
30	1,305	277,2	1,2631
25	1,1544	263,74	1,2194
20	1,017	250,55	1,1756
15	0,89198	237,59	1,1319
10	0,7786	224,86	1,0881
5	0,6762	212,33	1,0441
	n.	4s	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
36,378	9,6656	293,72	1,2631
30,988	9,5321	280,06	1,2194
25,613	9,4001	266,6	1,1756
20,283	9,2711	253,42	1,1319
14,972	9,1382	240,44	1,0881
9,6734	9,003	227,63	1,0441

Tabela Z. 77. Właściwości termodynamiczne czynnika Propylen dla wariantu ze zmienna temperaturą skraplania Tabela Z. 78. Właściwości termodynamiczne czynnika R1234yf dla wariantu ze zmienna temperaturą skraplania

	R1234yf				
	n	1			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
135	5,06775	278,68	0,82615		
135	5,06775	278,68	0,82615		
135	5,06775	278,68	0,82615		
135	5,06775	278,68	0,82615		
135	5,06775	278,68	0,82615		
135	5,06775	278,68	0,82615		
	n	2			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg∙K]		
30	0,78351	218,33	0,74599		
25	0,68258	215,44	0,74463		
20	0,59172	212,47	0,74327		
15	0,51025	209,41	0,74194		
10	0,43753	206,28	0,74071		
5	0,37292	203,1	0,73962		
	nî	2s			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
53,643	0,78351	243,56	0,82615		
49,283	0,68258	240,72	0,82615		
44,893	0,59172	237,78	0,82615		
40,459	0,51025	234,73	0,82615		
35,972	0,43753	231,57	0,82615		
31,416	0,37292	228,29	0,82615		
	n	3			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg∙K]		
30	0,78351	77,09	0,28009		
25	0,68258	70,076	0,25707		
20	0,59172	63,173	0,234		
15	0,51025	56,376	0,21086		
10	0,43753	49,679	0,18764		
5	0,37292	43,081	0,16433		
n4s					
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
32,927	5,06775	81,043	0,28009		
27,789	5,06775	74,056	0,25707		
22,659	5,06775	67,173	0,234		
17,537	5,06775	60,387	0,21086		
12,422	5,06775	53,697	0,18764		
7,3157	5,06775	47,099	0,16433		

	R134a				
	n	1			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
155	8,7282	459,73	1,7145		
155	8,6673	460,34	1,7162		
155	8,6038	460,99	1,718		
155	8,5344	461,7	1,72		
155	8,4629	462,46	1,7221		
155	8,3827	463,32	1,7245		
	n	2			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
30	0,7702	414,82	1,7145		
25	0,66538	412,33	1,7162		
20	0,57171	409,75	1,718		
15	0,48837	407,07	1,72		
10	0,41461	404,32	1,7221		
5	0,34966	401,49	1,7245		
	n	2s			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
30	0,7702	414,82	1,7145		
25	0,66538	412,33	1,7162		
20	0,57171	409,75	1,718		
15	0,48837	407,07	1,72		
10	0,41461	404,32	1,7221		
5	0,34966	401,49	1,7245		
	n	3			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
30	0,7702	241,72	1,1435		
25	0,66538	234,55	1,1199		
20	0,57171	227,47	1,0962		
15	0,48837	220,48	1,0724		
10	0,41461	213,58	1,0485		
5	0,34966	206,75	1,0243		
n4s					
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
34,36	8,7282	248,34	1,1435		
29,102	8,6673	241,09	1,1199		
23,863	8,6038	233,94	1,0962		
18,646	8,5344	226,88	1,0724		
13,454	8,4629	219,91	1,0485		
8,2472	8,3827	212,98	1,0243		

Tabela Z. 79. Właściwości termodynamiczne czynnika R134a dla wariantu ze zmienna temperaturą skraplania

Tabela Z. 80. Właściwości termodynamiczne czynnika R227ea dla wariantu ze zmienna temperaturą skraplania

	R227ea				
	n	1			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
155	16,314	388,96	1,5085		
155	16,314	388,96	1,5085		
155	16,314	388,96	1,5085		
155	16,314	388,96	1,5085		
155	16,314	388,96	1,5085		
155	16,314	388,96	1,5085		
	n	2			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg∙K]		
30	0,52842	343,35	1,478		
25	0,45473	340,29	1,4741		
20	0,38908	337,18	1,4702		
15	0,33089	334,03	1,4664		
10	0,27957	330,86	1,4627		
5	0,23458	327,65	1,459		
	n	2s			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg∙K]		
40,279	0,52842	352,74	1,5085		
36,695	0,45473	350,74	1,5085		
33,101	0,38908	348,64	1,5085		
29,484	0,33089	346,47	1,5085		
25,829	0,27957	344,2	1,5085		
22,124	0,23458	341,84	1,5085		
	n	3			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
30	0,52842	234,64	1,1194		
25	0,45473	228,69	1,0998		
20	0,38908	222,81	1,0801		
15	0,33089	217,01	1,0603		
10	0,27957	211,28	1,0403		
5	0,23458	205,61	1,0202		
n4s					
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]		
37,714	16,314	245,85	1,1194		
32,341	16,314	239,81	1,0998		
26,995	16,314	233,85	1,0801		
21,675	16,314	227,96	1,0603		
16,358	16,314	222,11	1,0403		
11,071	16,314	216,35	1,0202		

	R1	.61	
	n	1	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
115	5,092	634,09	2,2345
115	5,092	634,09	2,2345
115	5,092	634,09	2,2345
115	5,092	634,09	2,2345
115	5,092	634,09	2,2345
115	5,092	634,09	2,2345
	n	2	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
30	1,0586	591,91	2,3008
25	0,92565	589,15	2,3106
20	0,80555	586,21	2,3207
15	0,69745	583,12	2,3312
10	0,60057	579,9	2,3422
5	0,51414	576,57	2,3538
	n	2s	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
30,001	1,0586	571,82	2,2345
25	0,92565	566,45	2,2345
20	0,80555	560,93	2,2345
15	0,69745	555,25	2,2345
10	0,60057	549,4	2,2345
4,9998	0,51414	543,39	2,2345
	n	3	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
30	1,0586	263,23	1,2166
25	0,92565	252,35	1,181
20	0,80555	241,62	1,1453
15	0,69745	231,03	1,1093
10	0,60057	220,57	1,0732
5	0,51414	210,23	1,0367
	n	4s	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
32,097	5,092	268,88	1,2166
27,026	5,092	258,11	1,181
21,962	5,092	247,48	1,1453
16,884	5,092	236,95	1,1093
11,825	5,092	226,57	1,0732
6.7491	5,092	216,26	1,0367

Tabela Z. 81. Właściwości termodynamiczne czynnika
R161 dla wariantu ze zmienna temperaturą skraplania

Tabela Z. 82 R152a dla w	Tabela Z. 82. Właściwości termodynamiczne czynnika				
	aı			ą skiapiania	
		n	1		
+ [°C]		n [MPa]	T h [k]/kg]	s[k]/kø·K]	
15	5	6 25/13	596.81	2 0828	
15	5	6 1644	598.93	2,0020	
15	5	6.0677	601 19	2,0000	
15	5	5 9671	603.49	2,0002	
15	5	5 858	605.94	2,1010	
15	5	5 7417	608 5	2,1005	
10	<u> </u>		2	2,1101	
t [°C]		n [MPa]	2 h [k]/kg]	s[k]/kø·K]	
2	0	0 68982	525.96	2 0828	
2	5	0 59641	523,09	2,0020	
2	0	0 51291	520,09	2,0000	
1	5	0 43859	516.99	2 1018	
1	0	0 37277	513 78	2 1089	
-	5	0.31478	510,49	2,1164	
	-	n)	2s	_,	
t [°C]		p [MPa]	h [k]/kg]	s [k]/kø·K]	
3	0	0.68982	525.96	2.0828	
2	5	0.59641	523.09	2.0888	
2	0	0.51291	520.09	2.0952	
1	5	0,43859	516,99	2,1018	
1	0	0,37277	513,78	2,1089	
	5	0,31478	510,49	2,1164	
		n	3		
t [°C]		p [MPa]	h [kJ/kg]	s [kJ/kg·K]	
3	0	0,68982	252,8	1,1817	
2	5	0,59641	243,73	1,1519	
2	0	0,51291	234,77	1,1219	
1	5	0,43859	225,93	1,0917	
1	0	0,37277	217,19	1,0614	
	5	0,31478	208,55	1,0308	
		n	4s		
t [°C]		p [MPa]	h [kJ/kg]	s [kJ/kg·K]	
32,98	8	6,2543	259,03	1,1817	
27,82	3	6,1644	249,89	1,1519	
22,65	5	6,0677	240,83	1,1219	
17,49	2	5,9671	231,87	1,0917	
12,35	1	5,858	223,02	1,0614	
7,202	7	5,7417	214,24	1,0308	

RC318			
n1			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
155	9,6368	383,78	1,5085
155	9,6368	383,78	1,5085
155	9,6368	383,78	1,5085
155	9,6368	383,78	1,5085
155	9,6368	383,78	1,5085
155	9,6368	383,78	1,5085
	n	2	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
30	0,36556	334,67	1,4494
25	0,31251	331,35	1,4441
20	0,26551	328	1,439
15	0,2241	324,64	1,4339
10	0,18782	321,28	1,4289
5	0,15623	317,9	1,424
	n	2s	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
51,966	0,36556	353,24	1,5085
48,942	0,31251	351,3	1,5085
45,88	0,26551	349,28	1,5085
42,769	0,2241	347,18	1,5085
39,597	0,18782	345	1,5085
36,355	0,15623	342,72	1,5085
	n	3	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
30	0,36556	232,72	1,1131
25	0,31251	227,12	1,0945
20	0,26551	221,57	1,0759
15	0,2241	216,09	1,0571
10	0,18782	210,67	1,0382
5	0,15623	205,31	1,0192
n4s			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
34,282	9,6368	238,91	1,1131
29,066	9,6368	233,24	1,0945
23,896	9,6368	227,67	1,0759
18,718	9,6368	222,13	1,0571
13,56	9,6368	216,66	1,0382
8,422	9,6368	211,26	1,0192

Tabela Z. 83. Właściwości termodynamiczne czynnika RC318 dla wariantu ze zmienna temperaturą skraplania Tabela Z. 84. Właściwości termodynamiczne czynnika R236fa dla wariantu ze zmienna temperaturą skraplania

R236fa			
n1			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
155	4,321	452,17	1,6979
155	4,321	452,17	1,6979
155	4,321	452,17	1,6979
155	4,321	452,17	1,6979
155	4,321	452,17	1,6979
155	4,321	452,17	1,6979
	n	2	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
30	0,32101	380,23	1,6004
25	0,27241	376,84	1,5973
20	0,22964	373,42	1,5943
15	0,19223	369,99	1,5914
10	0,15972	366,53	1,5888
5	0,13164	363,06	1,5864
	n	2s	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
64,301	0,32101	411,42	1,6979
60,452	0,27241	408,6	1,6979
56,525	0,22964	405,67	1,6979
52,511	0,19223	402,64	1,6979
48,398	0,15972	399,5	1,6979
44,174	0,13164	396,24	1,6979
	n	3	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg∙K]
30	0,32101	237,28	1,1289
25	0,27241	230,92	1,1079
20	0,22964	224,62	1,0867
15	0,19223	218,38	1,0653
10	0,15972	212,2	1,0437
5	0,13164	206,07	1,022
n4s			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg∙K]
31,76	4,321	240,24	1,1289
26,7	4,321	233,89	1,1079
21,635	4,321	227,59	1,0867
16,567	4,321	221,34	1,0653
11,499	4,321	215,13	1,0437
6,4571	4,321	209,01	1,022

Izobutan			
n1			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
155	4,18835	744,95	2,4848
155	4,18835	744,95	2,4848
155	4,18835	744,95	2,4848
155	4,18835	744,95	2,4848
155	4,18835	744,95	2,4848
155	4,18835	744,95	2,4848
	n	2	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
30	0,40472	594,57	2,3123
25	0,35067	587,9	2,3085
20	0,30222	581,21	2,3051
15	0,25899	574,5	2,3023
10	0,22061	567,78	2,3
5	0,18672	561,06	2,2983
	n	2s	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
59,245	0,40472	649,35	2,4848
55,02	0,35067	643,08	2,4848
50,706	0,30222	636,61	2,4848
46,291	0,25899	629,93	2,4848
41,765	0,22061	623,03	2,4848
37,117	0,18672	615,92	2,4848
	n	3	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
30	0,40472	271,24	1,2458
25	0,35067	258,98	1,2053
20	0,30222	246,88	1,1647
15	0,25899	234,94	1,1239
10	0,22061	223,15	1,0828
5	0,18672	211,5	1,0415
n4s			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
31,975	4,18835	278,16	1,2458
26,903	4,18835	265,91	1,2053
21,843	4,18835	253,83	1,1647
16,784	4,18835	241,9	1,1239
11,717	4,18835	230,09	1,0828
6,6569	4,18835	218,43	1,0415

Tabela Z. 85. Właściwości termodynamiczne czynnika Izobutan dla wariantu ze zmienna temperaturą skraplania

Butan dla wariantu ze zmienna temperaturą skraplania			
Butan			
	n	1	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
155	3,797	758,96	2,5158
155	3,797	758,96	2,5158
155	3,797	758,96	2,5158
155	3,797	758,96	2,5158
155	3,797	758,96	2,5158
155	3,797	758,96	2,5158
	n	2	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg∙K]
30	0,28341	628,06	2,4234
25	0,24329	620,94	2,4198
20	0,20765	613,8	2,4167
15	0,17615	606,66	2,4141
10	0,14845	599,53	2,4122
5	0,12425	592,39	2,411
	n	2s	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg∙K]
45,497	0,28341	656,79	2,5158
41,14	0,24329	650,34	2,5158
36,69	0,20765	643,68	2,5158
32,136	0,17615	636,83	2,5158
27,466	0,14845	629,75	2,5158
22,673	0,12425	622,47	2,5158
	n	3	
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
30	0,28341	271,76	1,2481
25	0,24329	259,46	1,2074
20	0,20765	247,3	1,1665
15	0,17615	235,28	1,1253
10	0,14845	223,4	1,0838
5	0,12425	211,64	1,0421
n4s			
t [°C]	p [MPa]	h [kJ/kg]	s [kJ/kg·K]
31,564	3,797	277,95	1,2481
26,512	3,797	265,65	1,2074
21,466	3,797	253,5	1,1665
16,415	3,797	241,46	1,1253
11,362	3,797	229,55	1,0838
6,3242	3,797	217,79	1,0421

Tabela Z. 86. Właściwości termodynamiczne czynnika Butan dla wariantu ze zmienna temperaturą skraplania

załącznik 7: Właściwości termodynamiczne czynników roboczych przy wyznaczaniu optymalnej wartości ciśnienia górnego

Tabela Z. 87. Właściwości termodynamiczne czynnika R1234yf dla dodatkowych wariantów ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej t_{par}=115°C

R1234yf (115°C)		
Wielkość	Wartość przy założeniu p _{śr1}	Wartość przy założeniu p _{śr2}
T _{n1}	115	115
T _{n2s}	38,907	33,879
$T_{n2} = T_{n3}$	30	30
T _{n4s}	32,337	32,457
$p_{n1} = p_{n4s}$	4,1522	4,3362
$p_{n2} = p_{n2s} = p_{n3}$	0,78351	0,78351
h _{n1}	256,22	250,03
h _{n2s}	227,92	222,52
h _{n2}	218,33	218,33
h _{n3}	77,09	77,09
h _{n4s}	80,205	80,373
$S_{n1} = S_{n2s}$	0,77717	0,75974
S _{n2}	0,74599	0,74599
$S_{n3} = S_{n4s}$	0,28009	0,28009

Tabela Z. 88. Właściwości termodynamiczne czynnika R1234yf dla dodatkowych wariantów ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej tpar=135°C

R1234yf (135°C)		
Wielkość	Wartość przy założeniu pśri	Wartość przy założeniu p _{śr2}
T _{n1}	135	135
T _{n2s}	59,093	38,444
$T_{n2} = T_{n3}$	30	30
T _{n4s}	32,713	33,561
$p_{n1} = p_{n4s}$	4,7333	6,0793
$p_{n2} = p_{n2s} = p_{n3}$	0,78351	0,78351
h _{n1}	284,68	260,69
h _{n2s}	249,32	227,42
h _{n2}	218,33	218,33
h _{n3}	77,09	77,09
h _{n4s}	80,737	81,965
$S_{n1} = S_{n2s}$	0,84362	0,77558
S _{n2}	0,74599	0,74599
$S_{n3} = S_{n4s}$	0,28009	0,28009

R227ea (135°C)		
Wielkość	Wartość przy założeniu p _{śr1}	Wartość przy założeniu p _{śr2}
T _{n1}	135	135
T _{n2s}	73,009	47,144
$T_{n2} = T_{n3}$	30	30
T _{n4s}	31,837	32,69
$p_{n1} = p_{n4s}$	3,7261	5,3264
$p_{n2} = p_{n2s} = p_{n3}$	0,52842	0,52842
h _{n1}	410,42	384,95
h _{n2s}	382,6	358,98
h _{n2}	343,35	343,35
h _{n3}	234,64	234,64
h _{n4s}	236,95	238,1
$S_{n1} = S_{n2s}$	1,5991	1,5282
S _{n2}	1,478	1,478
$S_{n3} = S_{n4s}$	1,1194	1,1194

Tabela Z. 89. Właściwości termodynamiczne czynnika R227ea dla dodatkowych wariantów ciśnienia górnego przy
temperaturze pary na wlocie do turbiny wynoszącej tpar=135°C

Tabela Z. 90. Właściwości termodynamiczne czynnika R236fa dla dodatkowych wariantów ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej tpar=135°C

R236fa (135°C)		
Wielkość	Wartość przy założeniu pśri	Wartość przy założeniu p _{śr2}
T _{n1}	135	135
T _{n2s}	54,09	47,015
$T_{n2} = T_{n3}$	30	30
T _{n4s}	31,326	31,414
$p_{n1} = p_{n4s}$	3,3034	3,5082
$p_{n2} = p_{n2s} = p_{n3}$	0,32101	0,32101
h _{n1}	437,23	429,78
h _{n2s}	402,05	395,61
h _{n2}	380,23	380,23
h _{n3}	237,28	237,28
h _{n4s}	239,49	239,64
$S_{n1} = S_{n2s}$	1,6697	1,6498
S _{n2}	1,6004	1,6004
$S_{n3} = S_{n4s}$	1,1289	1,1289

R236fa (155°C)		
Wielkość	Wartość przy założeniu p _{śr1}	Wartość przy założeniu p _{śr2}
T _{n1}	155	155
T _{n2s}	75,049	52,444
$T_{n2} = T_{n3}$	30	30
T _{n4s}	31,52	31,989
$p_{n1} = p_{n4s}$	3,7565	4,8675
$p_{n2} = p_{n2s} = p_{n3}$	0,32101	0,32101
h _{n1}	462,8	439,4
h _{n2s}	421,4	400,55
h _{n2}	380,23	380,23
h _{n3}	237,28	237,28
h _{n4s}	239,83	240,64
$s_{n1} = s_{n2s}$	1,727	1,6651
S _{n2}	1,6004	1,6004
$S_{n3} = S_{n4s}$	1,1289	1,1289

Tabela Z. 91. Właściwości termodynamiczne czynnika R236fa dla dodatkowych wariantów ciśnienia górnego przy
temperaturze pary na wlocie do turbiny wynoszącej tpar=155°C

Tabela Z. 92. Właściwości termodynamiczne czynnika ilzobutan dla dodatkowych wariantów ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej tpar=155°C

Izobutan (155°C)		
Wielkość	Wartość przy założeniu p _{śr1}	Wartość przy założeniu p _{śr2}
T _{n1}	155	155
T _{n2s}	66,171	50,937
$T_{n2} = T_{n3}$	30	30
T _{n4s}	31,835	32,114
$p_{n1} = p_{n4s}$	3,9091	4,4675
$p_{n2} = p_{n2s} = p_{n3}$	0,40472	0,40472
h _{n1}	759,73	726,26
h _{n2s}	662,72	633,53
h _{n2}	594,57	594,57
h _{n3}	271,24	271,24
h _{n4s}	277,66	278,67
$s_{n1} = s_{n2s}$	2,5246	2,4366
S _{n2}	2,3123	2,3123
$S_{n3} = S_{n4s}$	1,2458	1,2458

Butan (155°C)								
Wielkość	Wartość przy założeniu p _{śr1}	Wartość przy założeniu p _{śr2}						
T _{n1}	155	155						
T _{n2s}	45,429	45,276						
$T_{n2} = T_{n3}$	30	30						
T _{n4s}	31,565	31,566						
$p_{n1} = p_{n4s}$	3,7984	3,8012						
$p_{n2} = p_{n2s} = p_{n3}$	0,28341	0,28341						
h _{n1}	758,77	758,4						
h _{n2s}	656,66	656,38						
h _{n2}	628,06	628,06						
h _{n3}	271,76	271,76						
h _{n4s}	277,95	277,96						
$s_{n1} = s_{n2s}$	2,5154	2,5145						
S _{n2}	2,4234	2,4234						
$S_{n3} = S_{n4s}$	1,2481	1,2481						

Tabela Z. 93. Właściwości termodynamiczne czynnika butan dla dodatkowych wariantów ciśnienia górnego pr	zy
temperaturze pary na wlocie do turbiny wynoszącej tpar=155°C	

ZAŁĄCZNIK 8: WYNIKI OBLICZEŃ DLA OBIEGU NADKRYTYCZNEGO

P _{min}									
czynnik	t_{par}	m'n _n	Żd	Qw	Nt	Np	N _{cr}	η	Н
	[°C]	[kg/s]	[kW]	[kW]	[kW]	[kW]	[kW]	[-]	[%]
R41	95	7,55	2514	2381,68	154,13	21,81	132,32	0,0526	5,26
	115	6,78	2514	2377,44	156,15	19,59	136,56	0,0543	5,43
	135	6,19	2514	2374,95	156,93	17,88	139,05	0,0553	5,53
R125	95	16,84	2514	2285,93	257,21	29,14	228,07	0,0907	9,07
	115	14,51	2514	2285,88	253,23	25,11	228,12	0,0907	9,07
	135	12,84	2514	2287,88	248,33	22,21	226,12	0,0899	8,99
	155	11,54	2514	2291,35	242,62	19,97	222,65	0,0886	8,86
R143a	95	12,89	2514	2247,66	299,09	32,74	266,34	0,1059	10,59
	115	11,09	2514	2241,07	301,09	28,16	272,93	0,1086	10,86
	135	9,84	2514	2239,68	299,31	24,99	274,32	0,1091	10,91
	155	8,88	2514	2240,69	295,86	22,55	273,31	0,1087	10,87
R32	95	9,37	2514	2215,67	336,54	38,22	298,33	0,1187	11,87
	115	8,14	2514	2190,52	356,71	33,23	323,48	0,1287	12,87
	135	7,37	2514	2173,14	370,94	30,08	340,86	0,1356	13,56
	155	6,79	2514	2161,25	380,46	27,71	352,75	0,1403	14,03
Propylen	115	6,14	2514	2162,14	391,67	39,81	351,86	0,14	14
	135	5,41	2514	2151,6	397,45	35,05	362,4	0,1442	14,42
	155	4,88	2514	2147,79	397,81	31,6	366,21	0,1457	14,57
R1234yf	115	14,05	2514	2154,84	401,74	42,58	359,16	0,1429	14,29
	135	11,67	2514	2141,75	407,6	35,36	372,25	0,1481	14,81
R134a	115	11,95	2514	2142,16	404,82	32,98	371,84	0,1479	14,79
	135	10,35	2514	2127,92	414,64	28,56	386,08	0,1536	15,36
	155	9,29	2514	2123,52	416,11	25,63	390,48	0,1553	15,53
R227ea	115	15,91	2514	2173,36	368,17	27,52	340,64	0,1355	13,55
	135	13,63	2514	2175,94	361,63	23,57	338,06	0,1345	13,45
	155	12,08	2514	2181,34	353,57	20,9	332,66	0,1323	13,23
R161	115	6,88	2514	2124,24	428,65	38,89	389,76	0,155	15,5
R152a	135	7,51	2514	2079,51	466,81	32,31	434,49	0,1728	17,28
	155	6,7	2514	2061,56	481,24	28,8	452,44	0,18	18
RC318	135	14,67	2514	2152,49	385,56	24,05	361,51	0,1438	14,38
	155	12,86	2514	2159,14	375,96	21,09	354,86	0,1412	14,12
R236fa	135	12,52	2514	2096,48	444,31	26,79	417,52	0,1661	16,61
	155	10,84	2514	2093,01	444,19	23,2	420,99	0,1675	16,75
Izobutan	155	5,08	2514	2049,69	494,33	30,03	464,31	0,1847	18,47
Butan	155	5,23	2514	2012,36	533,99	32,35	501,64	0,1995	19,95

Tabela Z. 94. Wyniki obliczeń parametrów pracy siłowni ORC z nadkrytycznym obiegiem Clausiusa- Rankine'a przy założeniu minimalnego ciśnienia górnego

Pśr										
czynnik	t_{par}	ṁn	Q _d	Qw	Nt	Np	N _{cr}	η	η	
	[°C]	[kg/s]	[kW]	[kW]	[kW]	[kW]	[kW]	[-]	[%]	
R41	95	8,77	2514,00	2274,24	301,34	61,58	239,76	0,0954	9,54	
	115	8,19	2514,00	2209,10	385,90	81,00	304,90	0,1213	12,13	
	135	7,78	2514,00	2142,27	478,14	106,41	371,73	0,1479	14,79	
R125	95	18,54	2514,00	2244,58	316,15	46,73	269,42	0,1072	10,72	
	115	17,23	2514,00	2190,92	389,08	65,99	323,08	0,1285	12,85	
	135	17,16	2514,00	2130,03	502,01	118,04	383,97	0,1527	15,27	
	155	17,01	2514,00	2064,67	680,46	231,13	449,33	0,1787	17,87	
R143a	95	13,60	2514,00	2230,15	324,93	41,07	283,85	0,1129	11,29	
	115	12,33	2514,00	2182,93	380,88	49,81	331,07	0,1317	13,17	
	135	11,64	2514,00	2130,86	450,63	67,48	383,14	0,1524	15,24	
	155	11,47	2514,00	2074,04	546,07	106,12	439,96	0,1750	17,50	
R32	95	8,96	2514,00	2228,30	317,77	32,06	285,70	0,1136	11,36	
	115	8,25	2514,00	2184,15	365,50	35,65	329,85	0,1312	13,12	
	135	7,72	2514,00	2139,24	415,23	40,47	374,76	0,1491	14,91	
	155	7,30	2514,00	2093,58	467,06	46,64	420,42	0,1672	16,72	
Propylen	115	6,35	2514,00	2151,87	407,78	45,65	362,13	0,1440	14,40	
	135	5,84	2514,00	2109,92	456,25	52,17	404,08	0,1607	16,07	
	155	5,48	2514,00	2066,09	511,02	63,10	447,91	0,1782	17,82	
R1234yf	115	14,54	2514,00	2154,45	406,06	46,51	359,55	0,1430	14,30	
	135	13,16	2514,00	2114,52	455,56	56,08	399,48	0,1589	15,89	
R134a	115	12,14	2514,00	2140,17	408,68	34,85	373,83	0,1487	14,87	
	135	11,07	2514,00	2101,83	451,69	39,51	412,17	0,1640	16,40	
	155	10,40	2514,00	2062,36	500,41	48,77	451,64	0,1796	17,96	
R227ea	115	16,78	2514,00	2163,39	383,66	33,05	350,61	0,1395	13,95	
	135	15,77	2514,00	2129,47	430,09	45,56	384,53	0,1530	15,30	
	155	16,18	2514,00	2087,02	532,15	105,17	426,98	0,1698	16,98	
R161	115	6,67	2514,00	2128,44	420,85	35,29	385,56	0,1534	15,34	
R152a	135	7,56	2514,00	2078,45	468,66	33,11	435,55	0,1733	17,33	
	155	7,02	2514,00	2040,75	510,26	37,01	473,25	0,1882	18,82	
RC318	135	15,81	2514,00	2132,62	413,78	32,40	381,38	0,1517	15,17	
	155	16,12	2514,00	2099,43	477,91	63,35	414,57	0,1649	16,49	
R236fa	135	12,94	2514,00	2093,75	449,89	29,64	420,25	0,1672	16,72	
	155	11,85	2514,00	2065,88	483,20	35,08	448,12	0,1782	17,82	
Izobutan	155	5,39	2514,00	2036,39	514,87	37,27	477,61	0,1900	19,00	
Butan	155	5,23	2514,00	2012,39	533,98	32,38	501,61	0,1995	19,95	

Tabela Z. 95. Wyniki obliczeń parametrów pracy siłowni ORC z nadkrytycznym obiegiem Clausiusa- Rankine'a przy założeniu pośredniego ciśnienia górnego

Pgr											
czynnik	t_{par}	m'n _n	Q _d	Qw	Nt	Np	N _{cr}	η	Н		
	[°C]	[kg/s]	[kW]	[kW]	[kW]	[kW]	[kW]	[-]	[%]		
R41	95	10,71	2514,00	2229,86	402,75	118,61	284,14	0,1130	11,30		
	115	10,37	2514,00	2157,32	529,59	172,90	356,68	0,1419	14,19		
	135	10,03	2514,00	2087,84	667,12	240,97	426,16	0,1695	16,95		
R125	95	21,30	2514,00	2232,58	351,72	70,30	281,42	0,1119	11,19		
	115	20,78	2514,00	2178,13	458,49	122,62	335,87	0,1336	13,36		
	135	20,17	2514,00	2114,00	639,04	239,03	400,00	0,1591	15,91		
	155	19,44	2514,00	2037,80	958,62	482,42	476,20	0,1894	18,94		
R143a	95	14,57	2514,00	2221,51	343,33	50,84	292,49	0,1163	11,63		
	115	14,22	2514,00	2168,12	424,64	78,76	345,88	0,1376	13,76		
	135	13,88	2514,00	2116,30	522,59	124,89	397,70	0,1582	15,82		
	155	13,49	2514,00	2057,91	668,61	212,52	456,09	0,1814	18,14		
R32	95	8,62	2514,00	2244,32	296,23	26,55	269,68	0,1073	10,73		
	115	8,37	2514,00	2178,52	373,54	38,07	335,48	0,1334	13,34		
	135	8,14	2514,00	2118,46	447,53	51,99	395,54	0,1573	15,73		
	155	7,92	2514,00	2062,85	519,91	68,76	451,15	0,1795	17,95		
Propylen	115	6,60	2514,00	2145,72	420,38	52,09	368,28	0,1465	14,65		
	135	6,45	2514,00	2096,82	490,61	73,42	417,18	0,1659	16,59		
	155	6,31	2514,00	2051,33	566,94	104,27	462,67	0,1840	18,40		
R1234yf	115	15,13	2514,00	2156,71	408,23	50,94	357,29	0,1421	14,21		
	135	14,86	2514,00	2118,46	477,06	81,52	395,54	0,1573	15,73		
R134a	115	12,36	2514,00	2139,18	411,65	36,83	374,82	0,1491	14,91		
	135	12,12	2514,00	2097,42	469,65	53 <i>,</i> 07	416,58	0,1657	16,57		
	155	11,89	2514,00	2058,63	534,10	78,73	455,37	0,1811	18,11		
R227ea	115	18,31	2514,00	2163,38	391,08	40,46	350,62	0,1395	13,95		
	135	18,03	2514,00	2130,49	456,35	72,84	383,51	0,1525	15,25		
	155	17,56	2514,00	2074,69	635,44	196,13	439,31	0,1747	17,47		
R161	115	6,49	2514,00	2133,99	411,96	31,94	380,01	0,1512	15,12		
R152a	135	7,60	2514,00	2077,33	470,51	33,84	436,67	0,1737	17,37		
	155	7,44	2514,00	2033,05	527,32	46,37	480,95	0,1913	19,13		
RC318	135	17,68	2514,00	2130,71	426,78	43,49	383,29	0,1525	15,25		
	155	17,35	2514,00	2091,44	529,98	107,42	422,56	0,1681	16,81		
R236fa	135	13,58	2514,00	2095,09	452,04	33,13	418,91	0,1666	16,66		
	155	13,42	2514,00	2070,38	494,21	50,59	443,62	0,1765	17,65		
Izobutan	155	5,93	2514,00	2039,36	521,73	47,10	474,64	0,1888	18,88		
Butan	155	5,23	2514,00	2012,56	533,89	32,46	501,44	0,1995	19,95		

Tabela Z. 96. Wyniki obliczeń parametrów pracy siłowni ORC z nadkrytycznym obiegiem Clausiusa -Rankine'a przy założeniu granicznego ciśnienia górnego

załącznik 9: Różnice wartości wielkości charakterystycznych obiegów nadkrytycznych w zależności od przyjętej wartości ciśnienia górnego

Temperatura pary na wlocie do turbiny T _{par} =95										
	p _{min}	p _{śr}		p _{gr}						
czynnik	Ncr	Ncr	Δ1 (p _{śr} ; p _{min})	Ncr	$\Delta 2$ (p _{gr} ; p _{min})	Δ3 (p _{gr} ; p _{śr})				
	[kW]	[kW]	[kW]	[kW]	[kW]	[kW]				
R41	132,32	239,76	107,44	284,14	151,82	44,38				
R125	228,07	269,42	41,35	281,42	53,35	11,99				
R143a	266,34	283,85	17,51	292,49	26,15	8,64				
R32	298,33	285,70	-12,62	269,68	-28,65	-16,02				

Tabela Z. 97Wartości różnic mocy obiegu w zależności od przyjętego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej 95°C

Tabela Z. 98Wartości różnic mocy obiegu w zależności od przyjętego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej 115°C

Temperatura pary na wlocie do turbiny t _{par} =115										
	p _{min}	p _{śr}		p _{gr}						
czynnik	Ncr	Ncr	Δ1 (p _{śr} ; p _{min})	Ncr	$\Delta 2$ (p _{gr} ; p _{min})	Δ3 (p _{gr} ; p _{śr})				
	[kW]	[kW]	[kW]	[kW]	[kW]	[kW]				
R41	136,56	304,90	168,34	356,68	220,12	51,78				
R125	228,12	323,08	94,96	335,87	107,74	12,78				
R143a	272,93	331,07	58,14	345,88	72,95	14,82				
R32	323,48	329,85	6,36	335,48	12,00	5,63				
Propylen	351,86	362,13	10,27	368,28	16,42	6,16				
R1234yf	359,16	359,55	0,39	357,29	-1,87	-2,26				
R134a	371,84	373,83	1,99	374,82	2,98	0,99				
R227ea	340,64	350,61	9,97	350,62	9,97	0,00				
R161	389,76	385,56	-4,20	380,01	-9,74	-5,55				

Temperatura pary na wlocie do turbiny t _{par} =135										
	p _{min}	p _{śr}		p _{gr}						
czynnik	Ncr	Ncr	Δ1 (p _{śr} ; p _{min})	Ncr	Δ2 (p _{gr} ; p _{min})	Δ3 (p _{gr} ; p _{śr})				
	[kW]	[kW]	[kW]	[kW]	[kW]	[kW]				
R41	139,05	371,73	232,69	426,16	287,11	54,42				
R125	226,12	383,97	157,85	400,00	173,89	16,03				
R143a	274,32	383,14	108,83	397,70	123,38	14,56				
R32	340,86	374,76	33,90	395,54	54,69	20,79				
Propylen	362,40	404,08	41,68	417,18	54,78	13,10				
R1234yf	372,25	399,48	27,24	395,54	23,29	-3,94				
R134a	386,08	412,17	26,10	416,58	30,50	4,40				
R227ea	338,06	384,53	46,46	383,51	45,45	-1,02				
R152a	434,49	435,55	1,06	436,67	2,18	1,11				
RC318	361,51	381,38	19,87	383,29	21,78	1,90				
R236fa	417,52	420,25	2,73	418,91	1,39	-1,34				

Tabela Z. 99Wartości różnic mocy obiegu w zależności od przyjętego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej 135°C

Tabela Z. 100Wartości różnic mocy obiegu w zależności od przyjętego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej 155°C

Temperatura pary na wlocie do turbiny t _{par} =155										
	p _{min}	p _{śr}		p _{gr}	p _{gr}					
czynnik	Ncr	Ncr	Δ1 (p _{śr} ; p _{min})	Ncr	Δ2 (p _{gr} ; p _{min})	Δ3 (p _{gr} ; p _{śr})				
	[kW]	[kW]	[kW]	[kW]	[kW]	[kW]				
R125	222,65	449,33	226,68	476,20	253,55	26,87				
R143a	273,31	439,96	166,65	456,09	182,78	16,13				
R32	352,75	420,42	67,68	451,15	98,40	30,73				
Propylen	366,21	447,91	81,71	462,67	96,46	14,76				
R134a	390,48	451,64	61,16	455,37	64,90	3,74				
R227ea	332,66	426,98	94,32	439,31	106,65	12,33				
R152a	452,44	473,25	20,81	480,95	28,51	7,70				
RC318	354,86	414,57	59,71	422,56	67,70	7,99				
R236fa	420,99	448,12	27,13	443,62	22,64	-4,49				
Izobutan	464,31	477,61	13,30	474,64	10,33	-2,97				
Butan	501,64	501,61	-0,03	501,44	-0,20	-0,17				

Temperatura pary na wlocie do turbiny T _{par} =95									
	p _{min}	p _{śr}		p _{gr}					
czynnik	η	η	Δ1 (p _{śr} ; p _{min})	η	Δ2 (p _{gr} ; p _{min})	Δ3 (p _{gr} ; p _{śr})			
	[%]	[%]	[%]	[%]	[%]	[%]			
R41	5,26	9,54	4,27	11,30	6,04	1,77			
R125	9,07	10,72	1,64	11,19	2,12	0,48			
R143a	10,59	11,29	0,70	11,63	1,04	0,34			
R32	11,87	11,36	-0,50	10,73	-1,14	-0,64			

Tabela Z. 101Wartości różnic sprawności obiegu w zależności od przyjętego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej 95°C

Tabela Z. 102Wartości różnic sprawności obiegu w zależności od przyjętego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej 115°C

Temperatura pary na wlocie do turbiny T _{par} =115									
	p _{min}	p _{śr}		pgr					
czynnik	η	η	Δ1 (p _{śr} ; p _{min})	η	$\Delta 2 (p_{gr}; p_{min})$	Δ3 (p _{gr} ; p _{śr})			
	[%]	[%]	[%]	[%]	[%]	[%]			
R41	5,43	12,13	6,70	14,19	8,76	2,06			
R125	9,07	12,85	3,78	13,36	4,29	0,51			
R143a	10,86	13,17	2,31	13,76	2,90	0,59			
R32	12,87	13,12	0,25	13,34	0,48	0,22			
Propylen	14,00	14,40	0,41	14,65	0,65	0,24			
R1234yf	14,29	14,30	0,02	14,21	-0,07	-0,09			
R134a	14,79	14,87	0,08	14,91	0,12	0,04			
R227ea	13,55	13,95	0,40	13,95	0,40	0,00			
R161	15,50	15,34	-0,17	15,12	-0,39	-0,22			

Temperatura pary na wlocie do turbiny T _{par} =135									
	p _{min}	p _{śr}		pgr					
czynnik	η	η	Δ1 (p _{śr} ; p _{min})	η	Δ2 (p _{gr} ; p _{min})	Δ3 (p _{gr} ; p _{śr})			
	[%]	[%]	[%]	[%]	[%]	[%]			
R41	5,53	14,79	9,26	16,95	11,42	2,16			
R125	8,99	15,27	6,28	15,91	6,92	0,64			
R143a	10,91	15,24	4,33	15,82	4,91	0,58			
R32	13,56	14,91	1,35	15,73	2,18	0,83			
Propylen	14,42	16,07	1,66	16,59	2,18	0,52			
R1234yf	14,81	15,89	1,08	15,73	0,93	-0,16			
R134a	15,36	16,40	1,04	16,57	1,21	0,18			
R227ea	13,45	15,30	1,85	15,25	1,81	-0,04			
R152a	17,28	17,33	0,04	17,37	0,09	0,04			
RC318	14,38	15,17	0,79	15,25	0,87	0,08			
R236fa	16,61	16,72	0,11	16,66	0,06	-0,05			

Tabela Z. 103Wartości różnic sprawności obiegu w zależności od przyjętego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej 135°C

Tabela Z. 104Wartości różnic sprawności obiegu w zależności od przyjętego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej 155°C

Temperatura pary na wlocie do turbiny T _{par} =155									
	p _{min}	p _{śr}		pgr					
czynnik	η	η	Δ1 (p _{śr} ; p _{min})	η	Δ2 (p _{gr} ; p _{min})	Δ3 (p _{gr} ; p _{śr})			
	[%]	[%]	[%]	[%]	[%]	[%]			
R125	8,86	17,87	9,02	18,94	10,09	1,07			
R143a	10,87	17,50	6,63	18,14	7,27	0,64			
R32	14,03	16,72	2,69	17,95	3,91	1,22			
Propylen	14,57	17,82	3,25	18,40	3,84	0,59			
R134a	15,53	17,96	2,43	18,11	2,58	0,15			
R227ea	13,23	16,98	3,75	17,47	4,24	0,49			
R152a	18,00	18,82	0,83	19,13	1,13	0,31			
RC318	14,12	16,49	2,37	16,81	2,69	0,32			
R236fa	16,75	17,82	1,08	17,65	0,90	-0,18			
Izobutan	18,47	19,00	0,53	18,88	0,41	-0,12			
Butan	19,95	19,95	0,00	19,95	-0,01	-0,01			
Temperatura pary na wlocie do turbiny T _{par} =95									
--	------------------	--------	--	-----------------	--	---	--	--	--
	p _{min}	Pśr		p _{gr}					
czynnik	ṁn	ṁ'n	Δ1 (p _{śr} ; p _{min})	ṁn	Δ2 (p _{gr} ; p _{min})	Δ3 (p _{gr} ; p _{śr})			
	[kg/s]	[kg/s]	[kg/s]	[kg/s]	[kg/s]	[kg/s]			
R41	7,55	8,77	1,22	10,71	3,17	1,94			
R125	16,84	18,54	1,70	21,30	4,46	2,76			
R143a	12,89	13,60	0,71	14,57	1,67	0,97			
R32	9,37	8,96	-0,41	8,62	-0,75	-0,34			

Tabela Z. 105Wartości różnic natężenia przepływu czynnika roboczego w zależności od przyjętego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej 95°C

Tabela Z. 106Wartości różnic natężenia przepływu czynnika roboczego w zależności od przyjętego ciśnienia górnego przy temperaturze pary na włocie do turbiny wynoszącej 115°C

Temperatura pary na wiocie do turbiny t _{par} =115									
	p _{min}	p _{śr}		p _{gr}					
czynnik	ṁn	ṁn	Δ1 (p _{śr} ; p _{min})	ṁn	Δ2 (p _{gr} ; p _{min})	Δ3 (p _{gr} ; p _{śr})			
	[kg/s]	[kg/s]	[kg/s]	[kg/s]	[kg/s]	[kg/s]			
R41	6,78	8,19	1,41	10,37	3,59	2,18			
R125	14,51	17,23	2,72	20,78	6,27	3,55			
R143a	11,09	12,33	1,24	14,22	3,13	1,89			
R32	8,14	8,25	0,11	8,37	0,22	0,11			
Propylen	6,14	6,35	0,21	6,60	0,46	0,25			
R1234yf	14,05	14,54	0,49	15,13	1,07	0,59			
R134a	11,95	12,14	0,19	12,36	0,41	0,22			
R227ea	15,91	16,78	0,87	18,31	2,40	1,53			
R161	6,88	6,67	-0,21	6,49	-0,39	-0,18			

Temperatura pary na wlocie do turbiny T _{par} =135								
	p _{min}	p _{śr}			pgr			
czynnik	ṁ'n	ṁ'n	Δ1 (p _{śr} ; p _{min})	ṁ'n	Δ2 (p _{gr} ; p _{min})	Δ3 (p _{gr} ; p _{śr})		
	[kg/s]	[kg/s]	[kg/s]	[kg/s]	[kg/s]	[kg/s]		
R41	6,19	7,78	1,59	10,03	3,84	2,25		
R125	12,84	17,16	4,32	20,17	7,33	3,01		
R143a	9,84	11,64	1,80	13,88	4,04	2,24		
R32	7,37	7,72	0,35	8,14	0,76	0,41		
Propylen	5,41	5,84	0,43	6,45	1,04	0,62		
R1234yf	11,67	13,16	1,49	14,86	3,19	1,70		
R134a	10,35	11,07	0,72	12,12	1,77	1,05		
R227ea	13,63	15,77	2,14	18,03	4,40	2,26		
R152a	7,51	7,56	0,04	7,60	0,09	0,05		
RC318	14,67	15,81	1,14	17,68	3,01	1,87		
R236fa	12,52	12,94	0,42	13,58	1,06	0,64		

Tabela Z. 107Wartości różnic natężenia przepływu czynnika roboczego w zależności od przyjętego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej 135°C

Tabela Z. 108Wartości różnic natężenia przepływu czynnika roboczego w zależności od przyjętego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej 155°C

Temperatura pary na wlocie do turbiny t _{par} =155								
	p _{min}	p _{śr} p _{gr}						
czynnik	ṁ'n	ṁ'n	Δ1 (p _{śr} ; p _{min})	ṁ'n	Δ2 (p _{gr} ; p _{min})	Δ3 (p _{gr} ; p _{śr})		
	[kg/s]	[kg/s]	[kg/s]	[kg/s]	[kg/s]	[kg/s]		
R125	11,54	17,01	5,47	19,44	7,90	2,44		
R143a	8,88	11,47	2,59	13,49	4,61	2,02		
R32	6,79	7,30	0,51	7,92	1,13	0,62		
Propylen	4,88	5,48	0,60	6,31	1,44	0,83		
R134a	9,29	10,40	1,11	11,89	2,61	1,49		
R227ea	12,08	16,18	4,10	17,56	5,47	1,38		
R152a	6,70	7,02	0,33	7,44	0,75	0,42		
RC318	12,86	16,12	3,26	17,35	4,49	1,24		
R236fa	10,84	11,85	1,01	13,42	2,58	1,57		
Izobutan	5,08	5,39	0,30	5,93	0,85	0,55		
Butan	5,23	5,23	0,00	5,23	0,01	0,00		

Temperatura pary na wlocie do turbiny t _{par} =95									
	p _{min}	p _{min} p _{śr} p _{gr}							
czynnik	Np	Np	Δ1 (p _{śr} ; p _{min})	Np	Δ2 (p _{gr} ; p _{min})	Δ3 (p _{gr} ; p _{śr})			
	[kW]	[kW]	[kW]	[kW]	[kW]	[kW]			
R41	21,81	61,58	39,77	118,61	96,79	57,02			
R125	29,14	46,73	17,59	70,30	41,16	23,57			
R143a	32,74	41,07	8,33	50,84	18,09	9,76			
R32	38,22	32,06	-6,15	26,55	-11,67	-5,52			

Tabela Z. 109Wartości różnic mocy pompowania w zależności od przyjętego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej 95°C

Tabela Z. 110Wartości różnic mocy pompowania w zależności od przyjętego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej 115°C

Temperatura pary na wlocie do turbiny t _{par} =115								
	p _{min}	þ _{śr}		p _{gr}				
czynnik	Np	Np	Δ1 (p _{śr} ; p _{min})	Np	Δ2 (p _{gr} ; p _{min})	Δ3 (p _{gr} ; p _{śr})		
	[kW]	[kW]	[kW]	[kW]	[kW]	[kW]		
R41	19,59	81,00	61,41	172,90	153,31	91,90		
R125	25,11	65,99	40,89	122,62	97,52	56,63		
R143a	28,16	49,81	21,66	78,76	50,60	28,94		
R32	33,23	35,65	2,42	38,07	4,84	2,42		
Propylen	39,81	45,65	5,84	52,09	12,28	6,44		
R1234yf	42,58	46,51	3,93	50,94	8,37	4,43		
R134a	32,98	34,85	1,87	36,83	3,85	1,98		
R227ea	27,52	33,05	5,52	40,46	12,94	7,41		
R161	38,89	35,29	-3,61	31,94	-6,95	-3,34		

Temperatura pary na wlocie do turbiny t _{par} =135								
	p _{min}	þ _{śr}		pgr				
czynnik	Np	Np	Δ1 (p _{śr} ; p _{min})	Np	Δ2 (p _{gr} ; p _{min})	Δ3 (p _{gr} ; p _{śr})		
	[kW]	[kW]	[kW]	[kW]	[kW]	[kW]		
R41	17,88	106,41	88,53	240,97	223,08	134,56		
R125	22,21	118,04	95,83	239,03	216,82	121,00		
R143a	24,99	67,48	42,49	124,89	99,90	57,40		
R32	30,08	40,47	10,39	51,99	21,90	11,51		
Propylen	35,05	52,17	17,12	73,42	38,37	21,26		
R1234yf	35,36	56,08	20,73	81,52	46,16	25,44		
R134a	28,56	39,51	10,95	53,07	24,51	13,56		
R227ea	23,57	45,56	21,99	72,84	49,27	27,28		
R152a	32,31	33,11	0,80	33,84	1,53	0,73		
RC318	24,05	32,40	8,35	43,49	19,44	11,09		
R236fa	26,79	29,64	2,85	33,13	6,34	3,49		

Tabela Z. 111Wartości różnic mocy pompowania w zależności od przyjętego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej 135°C

Tabela Z. 112Wartości różnic mocy pompowania w zależności od przyjętego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej 155°C

Temperatura pary na wlocie do turbiny t _{par} =155								
	p _{min}	p _{śr}		pgr				
czynnik	Np	Np	Δ1 (p _{śr} ; p _{min})	Np	Δ2 (p _{gr} ; p _{min})	Δ3 (p _{gr} ; p _{śr})		
	[kW]	[kW]	[kW]	[kW]	[kW]	[kW]		
R125	19,97	231,13	211,16	482,42	462,45	251,29		
R143a	22,55	106,12	83,56	212,52	189,97	106,41		
R32	27,71	46,64	18,93	68,76	41,05	22,12		
Propylen	31,60	63,10	31,50	104,27	72,67	41,17		
R134a	25,63	48,77	23,14	78,73	53,10	29,96		
R227ea	20,90	105,17	84,26	196,13	175,22	90,96		
R152a	28,80	37,01	8,22	46,37	17,57	9,35		
RC318	21,09	63,35	42,25	107,42	86,32	44,07		
R236fa	23,20	35,08	11,88	50,59	27,39	15,51		
Izobutan	30,03	37,27	7,24	47,10	17,07	9,83		
Butan	32,35	32,38	0,02	32,46	0,10	0,08		

ZAŁĄCZNIK **10: P**ORÓWNANIE WYBRANYCH WIELKOŚCI CHARAKTERYZUJĄCYCH EFEKTYWNOŚĆ PRACY OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO

A. Czynnik R41

Jak przedstawiono na rysunkach Z.5. oraz Z.6. w przypadku czynnika R41 sprawność termiczna oraz moc obiegu we wszystkich możliwych do zrealizowania wariantach obiegu nadkrytycznego jest wyższa w stosunku do maksymalnych wartości uzyskanych dla obiegu podkrytycznego.

Rysunek Z. 5. Porównanie sprawności termicznej obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R41

Rysunek Z. 6. Porównanie mocy obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R41

Moc pompowania natomiast, jak to pokazano na rysunku Z.7. jest wyższa jedynie w przypadku realizacji obiegu nadkrytycznego przy ciśnieniach pośrednim oraz granicznym. Przy ciśnieniu minimalnym moc pompowania jest niższa niż w obiegu podkrytycznym.

Rysunek Z. 7. Porównanie mocy pompowania dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R41

Na rysunku Z.8.przedstawiono porównanie wartości natężenia przepływu czynnika roboczego w obiegu nadkrytycznym i podkrytycznym, z którego wynika, że we wszystkich możliwych do zrealizowania wariantach temperatury pary oraz ciśnienia górnego obiegu nadkrytycznego natężenie przepływu czynnika roboczego jest niższe w stosunku do obiegu podkrytycznego.

Rysunek Z. 8. Porównanie natężenia przepływu czynnika roboczego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R41

Kolejno, na rysunku Z.9. przedstawiono porównanie wartości ciśnienia górnego w obiegu nadkrytycznym i podkrytycznym, z którego wynika, że w przypadku czynnika R41 ciśnienie minimalne obiegu nadkrytycznego jest prawie równe ciśnieniu górnemu obiegu podkrytycznego. Natomiast w przypadku ciśnienia pośredniego oraz granicznego widać wyraźne różnice.

Rysunek Z. 9. Porównanie wartości ciśnienia górnego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R41

Analizując tabelę Z.113., w której zestawiono wartości liczbowe przedstawione na rysunku Z.9.co daje możliwość przeanalizowania różnic pomiędzy poszczególnymi wartościami ciśnień górnych wobiegu podkrytycznym oraz nadkrytycznym.

Tabela Z. 113. Porównanie wartości ciśnienia górnego dla obiegu nadkrytycznego i podkrytycznego w siłow	ni z
czynnikiem R41	

	Obieg nad	Obieg	podkrytyczny		
temperatura	temperatura	ciśnienie	Wartość ciśnienia	temperatura	wartość ciśnienia
źródła ciepła	pary	górne	górnego	pary	górnego
[°C]	[°C]		[MPa]	[°C]	[MPa]
	95	minimalne	5,898		
100	95	pośrednie	8,2225		
	95	graniczne	10,547		
	115	minimalne	5,898		
120	115	pośrednie	9,866	44	5,8889
	115	graniczne	13,834		
140	135	minimalne	5,898	1	
	135	pośrednie	12,071	1	
	135	graniczne	18,244]	

B. Czynnik R125

Jak pokazano na rysunkach Z.10. oraz Z.11., w przypadku czynnika R125 zarówno sprawność termiczna jak i moc obiegu nadkrytycznego we wszystkich możliwych do zrealizowania wariantach jest wyższa w stosunku do wartości osiągniętych przez obieg podkrytyczny.

Rysunek Z. 10. Porównanie sprawności termicznej dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R125

Na rysunku Z.12. przedstawiono porównanie mocy pompy obiegowej obiegu nadkrytycznego i podkrytycznego. Analizując ten rysunek można zauważyć, że moc pompowania w obiegu nadkrytycznym przy minimalnym ciśnieniu górnym jest niższa w stosunku do obiegu podkrytycznego. Moc pompy obiegowej w pozostałych wariantach ciśnienia górnego w obiegu nadkrytycznym jest wyższa w stosunku do obiegu

podkrytycznego i najwyższą wartość przyjmuje przy temperaturze t_{par}=155°C oraz przy granicznym ciśnieniu górnym.

Rysunek Z. 12. Porównanie mocy pompowania dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R125

Analizując wykres porównujący wartość natężenia przepływu w obiegu nadkrytycznym oraz podkrytycznym, przedstawiony na rysunku Z.13., można zauważyć, że wartość ta jest wyższa w przypadku obiegu podkrytycznego w stosunku do wszystkich wariantów obiegu nadkrytycznego.

Rysunek Z. 13. Porównanie natężenia przepływu masowego czynnika roboczego w obiegu nadkrytycznym i podkrytycznym dla siłowni z czynnikiem R125

Analizując wartości ciśnienia górnego w obiegu nadkrytycznym w odniesieniu do obiegu podkrytycznego, co zostało przedstawione na rysunku Z.14. nie można jednoznacznie stwierdzić, że ciśnienie minimalne obiegu nadkrytycznego jest wyższe w stosunku do ciśnienia górnego w obiegu podkrytycznym, a co za tym idzie, można przypuszczać, że wariant ten nie spełnia założeń przyjętych do obliczeń (nieprawidłowo realizowany obieg).

Jednak analizując tabelę Z.114., w której zebrano wielkości liczbowe pokazane na rysunku Z.14., widać, że wartość ciśnienia minimalnego w obiegu nadkrytycznym jest nieco wyższa w stosunku do obiegu podkrytycznego, co wskazuje iż wariant jest możliwy do zrealizowania.

Rysunek Z. 14. Porównanie wartości ciśnienia górnego w obiegu nadkrytycznym i podkrytycznym dla siłowni z czynnikiem R125

Ponadto zauważyć można, że najwyższą wartość ciśnienia górnego w przypadku czynnika R125 osiąga się w wariancie ciśnienia granicznego przy temperaturze 155°C.

	Obieg nad	Obieg	podkrytyczny		
temperatura	temperatura	ciśnienie	Wartość ciśnienia	temperatura	wartość ciśnienia
źródła ciepła	pary	górne	górnego	pary	górnego
[°C]	[°C]		[MPa]	[°C]	[MPa]
	95	minimalne	3,6187		
100	95	pośrednie	4,5475		
	95	graniczne	5,4763		
	115	minimalne	3,6187	1	
120	115	pośrednie	6,1167	1	
	115	graniczne	8,6146		2 6161
	135	minimalne	3,6187	00	5,0101
140	135	pośrednie	9,8029	1	
	135	graniczne	15,987	1	
	155	minimalne	3,6187	1	
160	155	pośrednie	18,183]	
	155	graniczne	32,748		

Tabela Z. 114. Porównanie wartości ciśnienia górnego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R125

C. Czynnik R143a

W przypadku czynnika R143a zarówno moc jak i sprawność termiczna we wszystkich możliwych

do zrealizowania wariantach obiegu nadkrytycznego jest wyższa w stosunku do obiegu podkrytycznego, co można zauważyć analizując rysunki Z.15. oraz Z.16.

Ponadto danych przedstawionych na tych rysunkach wynika, że najwyższe wartości mocy obiegu i sprawności termicznej osiągnięto w wariancie ciśnienia pośredniego oraz granicznego przy temperaturze t_{par}=155°C.

Rysunek Z. 15. Porównanie sprawności termicznej dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R143a

Rysunek Z. 16. Porównanie mocy obiegu nadkrytycznego i podkrytycznego dla siłowni z czynnikiem R143a

Na rysunku Z.17. przedstawiono porównanie mocy pompy obiegowej dla obiegu nadkrytycznego i podkrytycznego.

Analizując rysunek Z.17 można zauważyć, że moc pompowania w obiegu nadkrytycznym przy minimalnym ciśnieniu górnym jest niższa w stosunku do obiegu podkrytycznego. Moc pompy obiegowej w pozostałych wariantach ciśnienia górnego w obiegu nadkrytycznym jest wyższa w stosunku do obiegu podkrytycznego i najwyższą wartość przyjmuje przy temperaturze t_{par}=155°C przy granicznym ciśnieniu górnym.

Analizując z kolei rysunekZ.18., przedstawiający porównanie wartości natężenia przepływu

w obiegu nad- i podkrytycznym widać, że wartość ta jest najwyższa w przypadku obiegu podkrytycznego.

Rysunek Z. 18. Porównanie natężenia przepływu masowego czynnika roboczego w obiegu nadkrytycznym i podkrytycznym dla siłowni z czynnikiem R143a

Analizując wartości ciśnień górnych przedstawione na rysunku Z.19. można zauważyć, że ciśnienie minimalne obiegu nadkrytycznego jest niższe w stosunku do biegu

podkrytycznego, a co za tym idzie, że wariant ten nie spełnia założeń przyjętych w rozdziale 6 pracy.

Rysunek Z. 19. Porównanie wartości ciśnienia górnego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R143a

Jednak analiza wartości liczbowych przedstawionych w tabeli Z.115.pozwala stwierdzić, że wartości ciśnień górnych we wszystkich wariantach obiegu nadkrytycznego są wyższe w stosunku do obiegu podkrytycznego.

	Obieg nad	Obieg	podkrytyczny		
temperatura	temperatura	ciśnienie	Wartość ciśnienia	temperatura	wartość ciśnienia
źródła ciepła	pary	górne	górnego	pary	górnego
[°C]	[°C]		[Mpa]	[°C]	[Mpa]
	95	minimalne	3,762		
100	95	pośrednie	4,2022		
	95	graniczne	4,6425		
	115	minimalne	3,762		
120	115	pośrednie	5,1575		
	115	graniczne	6,553	70	2 7050
	135	minimalne	3,762	/2	3,7056
140	135	pośrednie	6,797		
	135	graniczne	9,8321		
	155	minimalne	3,762		
160	155	pośrednie	10,07	1	
	155	graniczne	16,378	1	

Tabela Z. 115. Porównanie wartości ciśnienia górnego obiegu nadkrytycznego i podkrytycznego siłowni z czynnikiem R143a

D. Czynnik R32

Porównując wartości sprawności termicznych oraz mocy obiegu nadkrytycznego względem obiegu podkrytycznego (rys. Z.20., Z.21.) w przypadku czynnika R32 można zauważyć, że wielkości te przy temperaturze pary wynoszącej t_{par}=95°C we wszystkich wariantach ciśnienia górnego w obiegu nadkrytycznym są niższe w stosunku do obiegu podkrytycznego.

Powodem takiego stanu jest zbyt niska temperatura pary, przez co niemożliwe jest osiągnięcie prawidłowych parametrów nadkrytycznych przez czynnik, co opisano w rozdziale 8.1.

Rysunek Z. 20. Porównanie sprawności termicznej obiegu nadkrytycznego i podkrytycznego dla siłowni z czynnikiem R32

Rysunek Z. 21. Porównanie mocy obiegu nadkrytycznego i podkrytycznego dla siłowni z czynnikiem R32

W pozostałych wariantach temperatury pary oraz ciśnienia górnego obieg nadkrytyczny realizowany był prawidłowo i dlatego zauważyć można, że zarówno moc jak i sprawność termiczna obiegu nadkrytycznego jest wyższa w stosunku do obiegu podkrytycznego.

Analizując wartość mocypompowania w obiegu nadkrytycznym w odniesieniu do podkrytycznego, co przedstawiono na rysunku Z.22. zauważyć można, że w przypadku obiegu nadkrytycznego nie spełniającego założeń początkowych moc pompowania przy ciśnieniu minimalnym jest wyższa w stosunku do obiegu podkrytycznego, natomiast przy ciśnieniu pośrednim oraz granicznym niższa. Odwrotnie jest gdy obieg nadkrytyczny spełnia założenia podane w rozdziale 6.1 pracy. Wówczas moc pompowania przy ciśnieniu minimalnym

70 65 Moc pompowania [kW] 60 55 50 Ciśnienie minimalne pmin 45 Eiśnienie pośrednie pśr 40 Ciśnienie graniczne pgr 35 30 - Obieg podkrytyczny 25 20 95 115 135 155 Temperatura pary na wlocie do turbiny [°C]

w obiegu nadkrytycznym jest niższa w stosunku do obiegu podkrytycznego oraz wyższa od tej w obiegu podkrytycznym przy ciśnieniu pośrednim oraz granicznym.

Następnie analizując rysunek Z.23. można zauważyć, że dla obiegu nadkrytycznego zgodnego z założeniami początkowymiwartość natężenia przepływu masowego czynnika roboczego jest niższa w stosunku do analogicznejwielkości dla obiegu podkrytycznego.

Rysunek Z. 23. Porównanie natężenia przepływu czynnika roboczego w obiegu nadkrytycznym i podkrytycznym w siłowni z czynnikiem R32

Rysunek Z. 24. Porównanie wartości ciśnienia górnego dla obiegu nadkrytycznego i podkrytycznego dla siłowni z czynnikiem R32

Obieg nadkrytyczny			Obieg podkrytyczny		
temperatura	temperatura	ciśnienie	Wartość ciśnienia	temperatura	wartość ciśnienia
źródła ciepła	pary	górne	górnego	pary	górnego
[°C]	[°C]		[MPa]	[°C]	[MPa]
	95	minimalne	5,783		
100	95	pośrednie	5,3078		
	95	graniczne	4,8326	78	5,7697
	115	minimalne	5,783		
120	115	pośrednie	6,0098		
	115	graniczne	6,2365		
	135	minimalne	5,783		
140	135	pośrednie	6,8867		
	135	graniczne	7,9903		
160	155	minimalne	5,783		
	155	pośrednie	7,99		
	155	graniczne	10,197		

Tabela Z. 116. Porównanie wartości ciśnień górnych dla obiegu nadkrytycznego i podkrytycznegow siłowni z czynnikiem R32

Po przeanalizowaniu rysunku Z.24. oraz tabeli Z.116., gdzie przedstawiono porównanie wartości ciśnień roboczych między obiegiem nadkrytycznym oraz podkrytycznym można zauważyć, że dla obiegu nadkrytycznego realizowanego zgodnie z założeniami początkowymi wartości ciśnień są wyższe w stosunku do obiegu podkrytycznego, natomiast w przypadku ciśnienia pośredniego oraz granicznego przy temperaturze pary wynoszącej t_{par}=95°C wartość ciśnienia górnego jest niższa w stosunku do obiegu podkrytycznego. Jest to spowodowane tym, iż t_{par}=95°C jest temperaturą niewystarczającą by czynnik osiągnął ciśnienie nadkrytyczne przy zakładanej wartości entropii właściwej (przyjęto taką wartość entropi właściwejktóra gwarantuje, że proces rozprężania w turbinie realizowany jest w obszarze pary suchej/przegrzanej). Wartość ciśnienia minimalnego jest co prawda prawidłowa oraz wyższa w stosunku do obiegu podkrytycznego jednak rozprężanie czynnika odbywa się częściowo w obszarze pary mokrej co jest zjawiskiem nieprawidłowym.

E. Propylen

Na rysunkach Z.25. oraz Z.26. przedstawiono porównanie sprawności termicznej oraz mocy dla obiegu nadkrytycznego i podkrytycznego dla czynnika roboczego propylenu.

Rysunek Z. 25. Porównanie sprawności termicznej obiegu nadkrytycznego i podkrytycznego siłowni z czynnikiem organicznym propylenem

Rysunek Z. 26. Porównanie mocy obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem roboczym propylenem

Po przeanalizowaniu rysunków Z.25. oraz Z.26. można zauważyć, że zarówno sprawność termiczna

jak i moc obiegu nadkrytycznego jest wyższa we wszystkich możliwych do zrealizowania wariantach ciśnienia górnego oraz temperatury pary w stosunku do obiegu podkrytycznego.

Na kolejnymrysunku (Z.27.)przedstawiono porównanie wartości mocy pompowania w obiegu nadkrytycznym względem obiegu podkrytycznego. Po jego przeanalizowaniu

można zauważyć, że moc pompowania jest wyższa w obiegu nadkrytycznym w stosunku do obiegu podkrytycznego tylko w wariancie ciśnienia pośredniego oraz granicznego. Natomiast w przypadku ciśnienia minimalnego wartość pracy pompowania w obiegu nadkrytycznym jest niższa w stosunku do obiegu podkrytycznego.

Rysunek Z. 27. Porównanie mocy pompowania dlaobiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem roboczym propylenem

Rysunek Z.28. przedstawia porównanie wartości masowego natężenia przepływu czynnika roboczego

w obiegu nadkrytycznym oraz podkrytycznym, z którego wynika, że wartość ta w obiegu nadkrytycznym jest niższa w stosunku do obiegu podkrytycznego.

Rysunek Z. 28. Porównanie natężenia przepływu czynnika roboczego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem propylen

Z kolei na rysunku Z.29. oraz w tabeli Z.117. przedstawiono porównanie ciśnień górnych.

Rysunek Z. 29. Porównanie wartości ciśnienia górnego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem propylen

	Obieg nad	Obieg podkrytyczny			
temperatura	temperatura	ciśnienie	Wartość ciśnienia	temperatura	wartość ciśnienia
źródła ciepła	pary	górne	górnego	pary	górnego
[°C]	[°C]		[MPa]	[°C]	[MPa]
	115	minimalne	4,556		
120	115	pośrednie	4,9109	91	4,5499
	115	graniczne	5,2658		
	135	minimalne	4,556		
140	135	pośrednie	5,7969		
	135	graniczne	7,0377		
160	155	minimalne	4,556		
	155	pośrednie	7,1108		
	155	graniczne	9,6656		

Tabela Z. 117. Tabelaryczne porównanie wartości ciśnienia górnego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem propylen

Porównując wartości ciśnień górnych obiegu nadkrytycznego i podkrytycznego można zauważyć, że we wszystkich wariantach obiegu nadkrytycznego ciśnienie górne jest wyższe w stosunku do obiegu podkrytycznego, co wskazuje, iż obieg nadkrytyczny spełnia założenia początkowe podane w rozdziale 6 pracy.

F. Czynnik R1234yf

W przypadku czynnika R1234yf na rysunkach Z.30. oraz Z.31. pokazano, że zarówno sprawność termiczna jak i moc obiegu nadkrytycznego jest wyższa we wszystkich możliwych do zrealizowania wariantach ciśnienia górnego oraz temperatury pary w stosunku do obiegu podkrytycznego.

Rysunek Z. 30. Porównanie sprawności termicznej dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R1234yf

Rysunek Z. 31. Porównanie mocy obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R1234yf

Na rysunku Z.32. przedstawiono porównanie wartości mocy pompowania w obiegu nadkrytycznym względem podkrytycznego, z którego wynika, że moc pompowania w obiegu nadkrytycznym jest niższa w stosunku do obiegu podkrytycznego jedynie w wariancie ciśnienia minimalnego przy temperaturze pary wynoszącejt_{par}=135°C.

W pozostałych możliwych do zrealizowania wariantach obiegu nadkrytycznego wartość mocy pompowania jest wyższa w stosunku do obiegu podkrytycznego.

Rysunek Z. 32. Porównanie mocy pompowania dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R1234yf

Na rysunku Z.33. przedstawiono porównanie natężenia przepływu czynnika roboczego w obiegu nadkrytycznym względem podkrytycznego i analizując go można zauważyć, że wartość ta jest wyższa w obiegu podkrytycznym w stosunku do wszystkich możliwych do zrealizowania wariantów obiegu nadkrytycznego.

Rysunek Z. 33. Porównanie natężenia masowego przepływu czynnika roboczego obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R1234yf

Z kolei analizując rysunek Z.34. oraz tabelę Z.118., w których przedstawiono porównanie wartości ciśnień roboczych w obiegu nadkrytycznym względem maksymalnej wartości ciśnienia górnego uzyskanego w obiegu podkrytycznym można zauważyć, że wartości ciśnienia górnego w obiegu nadkrytycznym są wyraźnie wyższe w stosunku do obiegu podkrytycznego.

Rysunek Z. 34. Porównanie wartości ciśnienia górnego obiegu nadkrytycznego i podkrytycznego dla siłowni z czynnikiem R1234yf

Tabela Z. 118. Porównanie wartości ciśnienia górnego obiegu nadkrytycznego i podkrytycznego w	I
siłowni z czynnikiem R1234yf	

	Obieg nad	Obieg podkrytyczny			
temperatura	temperatura	emperatura ciśnienie Wartość ciśnienia		temperatura	wartość ciśnienia
źródła ciepła	pary	górne	górnego	pary	górnego
[°C]	[°C]		[MPa]	[°C]	[MPa]
	115	minimalne	4,0603	92	3,3351
120	115	pośrednie	4,2442		
	115	graniczne	4,4282		
140	135	minimalne	4,0603		
	135	pośrednie	5,4063		
	135	graniczne	6,7523		

G. Czynnik R134a

Na rysunkach Z.35. i Z.36. przedstawiono porównanie sprawności termicznej oraz mocy obiegu nadkrytycznego względem podkrytycznego dla czynnika R134a.

Rysunek Z. 35. Porównanie sprawności termicznej obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R134a

Rysunek Z. 36. Porównanie mocy obiegu nadkrytycznego i podkrytycznego siłowni z czynnikiem R134a

Analizując oba rysunki można zauważyć, zarówno sprawność termiczna jak i moc obiegu nadkrytycznego jest wyższa we wszystkich możliwych do zrealizowania wariantach ciśnienia górnego oraz temperatury pary w stosunku do obiegu podkrytycznego.

Z kolei na rysunku Z.37. przedstawiono porównanie mocy pompowania w obiegu nadkrytycznym oraz podkrytycznym, z którego wynika, że wartość ta w przypadku obiegu nadkrytycznego jest niższa względem podkrytycznego jedynie w wariancie ciśnienia minimalnego, natomiast w wariantach ciśnienia pośredniego oraz granicznego jest wyższa.

Rysunek Z. 37. Porównanie mocy pompowania dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R134a

Rysunek Z.38. przedstawia porównanie natężenia przepływu czynnika roboczego w obiegu nadkrytycznym w stosunku do obiegu podkrytycznego. Po jego przeanalizowaniu można zauważyć, że we wszystkich możliwych do zrealizowania wariantach obiegu nadkrytycznego wartość natężenia przepływu czynnika roboczego jest niższa w stosunku do obiegu podkrytycznego.

Rysunek Z. 38. Porównanie natężenia przepływu czynnika roboczego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R134a

Na rysunku Z.39. oraz w tabeli Z.119. przedstawiono porównanie wartości ciśnień górnych obiegu nadkrytycznego względem obiegu podkrytycznego.

Rysunek Z. 39. Porównanie wartości ciśnienia górnego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R134a

Tabela Z. 119. Tabelaryczne zestawienie	wartości ciśnienia górnego dla obiegu nadkrytycznego i podkrytycznego w
siłowni z czynnikiem R134a	

Obieg nadkrytyczny				Obieg podkrytyczny	
temperatura	temperatura	ciśnienie	Wartość ciśnienia	temperatura	wartość ciśnienia
źródła ciepła	pary	górne	górnego	pary	górnego
[°C]	[°C]		[MPa]	[°C]	[MPa]
	115	minimalne	4,0603		4,0541
120	115	pośrednie	4,1912	101	
	115	graniczne	4,3221		
	135	minimalne	4,0603		
140	135	pośrednie	5,0362		
	135	graniczne	6,0121		
160	155	minimalne	4,0603		
	155	pośrednie	6,3943		
	155	graniczne	8,7282		

Analizując wykres z rysunku Z.39. oraz wielkości z tabeli Z.119. można stwierdzić, że wszystkie wartości ciśnienia górnego obiegu nadkrytycznego są wyższe od ciśnienia górnego obiegu podkrytycznego. Ponadto można zauważyć, że zmiany wartości ciśnienia w wariancie temperatury pary wynoszącej t_{par}=115°C są minimalne.

H. Czynnik R227ea

W przypadku czynnika R227ea jak pokazano na rysunkach Z.40.i Z.41. zarówno sprawność termiczna jak i moc obiegu nadkrytycznego we wszystkich możliwych do zrealizowania wariantach jest wyższa w porównaniu do analogicznych wielkości dla obiegu podkrytycznego.

Rysunek Z. 40. Porównanie sprawności termicznej dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R227ea

Rysunek Z. 41. Porównanie mocy obiegu nadkrytycznego i podkrytycznego dla siłowni z czynnikiem R227ea

Na rysunku Z.42. przedstawiono porównanie mocy pompy obiegowej w obiegu nadkrytycznym względem obiegu podkrytycznego, z którego wynika, że wielkość ta w obiegu nadkrytycznym jest niższa tylko w wariancie ciśnienia minimalnego. W pozostałych wariantach obiegu nadkrytycznego praca pompowania jest wyższa w stosunku do obiegu podkrytycznego.

Rysunek Z. 42. Porównanie mocy pompowania dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R227ea

Porównując wartość natężenia przepływu w obiegu nadkrytycznym względem obiegu podkrytycznego, co uczyniono na rysunku Z.43. można zauważyć, że wartość ta jest wyższa w obiegu podkrytycznym od wartości uzyskanych w każdym wariancie obiegu nadkrytycznego.

Rysunek Z. 43. Porównanie natężenia masowego przepływu czynnika roboczego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R227ea

Następnie analizując rysunek Z.44. oraz wielkości podane w tabeli Z.120., gdzie porównano wartości ciśnień górnych uzyskane w obiegu nadkrytycznym względem obiegu podkrytycznego można zauważyć, że we wszystkich możliwych do zrealizowania wariantach obiegu nadkrytycznego wartości ciśnienia górnego są wyższe w stosunku do wartości ciśnienia górnego uzyskanego w przypadku obiegu podkrytycznego. \

Rysunek Z. 44. Porównanie wartości ciśnienia górnego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R227ea

Tabela Z. 12	0. Tabelaryczne	zestawienie	wartości ciśnienia	górnego dla obie	gu nadkrytycznego i	podkrytycznego w
siłowni z czy	nnikiem R227ea)				

	Obieg nad	Obieg podkrytyczny			
temperatura	temperatura	ciśnienie	Wartość ciśnienia	temperatura	wartość ciśnienia
źródła ciepła	pary	górne	górnego	pary	górnego
[°C]	[°C]		[MPa]	[°C]	[MPa]
	115	minimalne	2,926		
120	115	pośrednie	3,2548	100	2,8216
	115	graniczne	3,5837		
	135	minimalne	2,926		
140	135	pośrednie	4,5263		
	135	graniczne	6,1265		
160	155	minimalne	2,926		
	155	pośrednie	9,591		
	155	graniczne	16,256		

I. Czynnik R161

Czynnik R161 stanowi drugi przykład czynnika, dla którego w żadnym z wariantów obiegu nie można było uzyskać przez parę czynnika prawidłowych parametrów nadkrytycznych(zdefiniowanych w założeniach początkowych w rozdziale 6 pracy), co zostało szerzej opisane w rozdziale 8.1.

Wyniki uzyskane dla tego czynnika oraz porównanie ich z tymi uzyskanymi dla obiegu podkrytycznego pokazują, że w przypadku czynnika R161 przy założeniach początkowych zdefiniowanych w pracy realizacja obiegu nadkrytycznego jest niekorzystna i daje gorsze wyniki w stosunku do obiegu podkrytycznego.

Jak przedstawiono na rysunku Z.45. oraz Z.46. zarówno sprawność jak i moc obiegu nadkrytycznego są niższe w stosunku do obiegu podkrytycznego.

Rysunek Z. 45. Porównanie sprawności termicznej

obiegu nadkrytycznego i podkrytycznego siłowni z czynnikiem R161

Rysunek Z. 46. Porównanie mocy obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R161

Na rysunku Z.47. przedstawiono porównanie mocy pompowania, z którego wynika, że wartość ta w obiegu nadkrytycznym jest wyższa jedynie przy ciśnieniu minimalnym.

Rysunek Z. 47. Porównanie mocy pompowania obiegu nadkrytycznego i podkrytycznego siłowni z czynnikiem R161

Na rysunku Z.48. z kolei przedstawiono porównanie natężenia przepływu, z którego wynika, że we wszystkich wariantach obiegu nadkrytycznego wartość natężenia przepływu jest wyższa w stosunku do obiegu podkrytycznego.

Rysunek Z. 48. Porównanie natężenia przepływu czynnika roboczego obiegu nadkrytycznego i podkrytycznego siłowni z czynnikiem R161

Na rysunku Z.49. oraz w tabeli Z.121. przedstawiono porównanie wartości ciśnienia górnego w obiegu nadkrytycznym oraz podkrytycznym i jak można zauważyć w obiegu nadkrytycznym jedynie wartość ciśnienia minimalnego jest wyższa w stosunku do obiegu podkrytycznego.

Rysunek Z. 49. Porównanie wartości ciśnienia górnego obiegu nadkrytycznego i podkrytycznego siłowni z czynnikiem R161

Tabela Z. 121. Porównanie wartości ciśnienia górnego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R161

Obieg nadkrytyczny				Obieg podkrytyczny	
temperatura	temperatura	ciśnienie	Wartość ciśnienia	temperatura	wartość ciśnienia
źródła ciepła	pary	górne	górnego	pary	górnego
[°C]	[°C]		[MPa]	[°C]	[MPa]
120	115	minimalne	5,092		
	115	pośrednie	4,8269	102	5,0754
	115	graniczne	4,5617		

Analizując rysunki Z.45. - Z.49. oraz tabelę Z.121. można zauważyć, że w przypadku nieprawidłowo prowadzonego obiegu nadkrytycznego schemat uzyskiwanych wyników jest odwrotny w stosunku do większości przypadków prawidłowo prowadzonego obiegu nadkrytycznego.

J. Czynnik R152a

Analizując rysunki Z.50. oraz Z.51. można zauważyć, że w przypadku czynnika R152a zarówno sprawność jak i moc obiegu nadkrytycznego we wszystkich wariantach ciśnienia górnego oraz temperatury pary jest wyższa w stosunku do obiegu podkrytycznego.

Rysunek Z. 50. Porównanie sprawności termicznej dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R152a

Rysunek Z. 51. Porównanie mocy obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R152a

Analizując rysunek Z.52., przedstawiający porównanie mocy pompowania między obiegiem podkrytycznym oraz nadkrytycznym można zauważyć, że wielkość ta w obiegu nadkrytycznym jest niższa w stosunku do obiegu podkrytycznego jedynie w wariancie ciśnienia minimalnego. W pozostałych wariantach ciśnienia górnego praca pompowania w obiegu nadkrytycznym jest wyższa w stosunku do obiegu podkrytycznego.

Rysunek Z. 52. Porównanie mocy pompowania dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R152a

Porównując wartość natężenia przepływu w obiegu nadkrytycznym oraz podkrytycznym, co uczyniono na rysunku Z.52., można zauważyć, że we wszystkich wariantach obiegu nadkrytycznego wielkość ta jest niższa w stosunku do obiegu podkrytycznego.

Rysunek Z. 53. Porównanie natężenia przepływu czynnika roboczego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R152a

Następnie na rysunku Z.54. oraz w tabeli Z.122. dokonano porównania wartości ciśnienia górnego we wszystkich możliwych do zrealizowania wariantach obiegu nadkrytycznego oraz w obiegu podkrytycznym i jak można zauważyć, wszystkie wartości ciśnienia górnego w obiegu nadkrytycznym są wyższe w stosunku do wartości ciśnienia górnego w obiegu podkrytycznym, co stanowi przesłankę by uznać, że obieg nadkrytyczny w przypadku czynnika R152a został zrealizowany prawidłowo.

Rysunek Z. 54. Porównanie wartości ciśnienia górnego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R152a

Tabela Z. 122. Tabelaryczne zestawienie wartości ciśnienia górnego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R152a

Obieg nadkrytyczny				Obieg podkrytyczny	
temperatura	temperatura	ciśnienie	Wartość ciśnienia	temperatura	wartość ciśnienia
źródła ciepła	pary	górne	górnego	pary	górnego
[°C]	[°C]		[MPa]	[°C]	[MPa]
	135	minimalne	4,5178	113	4,4938
140	135	pośrednie	4,588		
	135	graniczne	4,6582		
160	155	minimalne	4,5178		
	155	pośrednie	5,3861		
	155	graniczne	6,2543		

K. Czynnik RC318

Na rysunkach Z.55. oraz Z.56. przedstawiono porównanie sprawności oraz mocy w obiegu nadkrytycznym względem podkrytycznego dla czynnika RC318.

Rysunek Z. 55. Porównanie sprawności termicznej dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem RC318

Rysunek Z. 56. Porównanie mocy obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem RC318

Jak można zauważyć zarówno sprawność jak i moc obiegu nadkrytycznego są wyższe w stosunku do obiegu podkrytycznego. Jedynie w przypadku wariantu temperatury pary na wlocie do turbiny t_{par}=155°C, przy ciśnieniu minimalnym można uznać, że wartość sprawności oraz mocy jest równa.

Na rysunku Z.57. przedstawiono porównanie mocypompowania pomiędzy obiegiem nadoraz podkrytycznym. Jak można zauważyć wielkość ta w obiegu nadkrytycznym jest niższa w stosunku do obiegu podkrytycznego jedynie w wariancie ciśnienia minimalnego. W pozostałych wariantach ciśnienia górnego wartość mocy pompowania jest wyższa w stosunku do obiegu podkrytycznego.

Rysunek Z. 57. Porównanie mocy pompowania dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem RC318

Na rysunku Z.58. przedstawiono porównanie natężenia przepływu czynnika roboczego w obiegu nadkrytycznym względem obiegu podkrytycznego. Jak można zauważyć wielkość ta jest wyższa we wszystkich wariantach obiegu nadkrytycznego w porównaniu do obiegu podkrytycznego.

Rysunek Z. 58. Porównanie natężenia przepływu czynnika roboczego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem RC318

Na rysunkuZ.59. oraz w tabeli Z.123. przedstawiono porównanie wartości ciśnienia górnego. Jak można zauważyć ciśnienie górne obiegu podkrytycznego jest niższe w porównaniu z obiegiem nadkrytycznym, co wskazywać może na prawidłowe zrealizowanie obiegu nadkrytycznego.

Rysunek Z. 59. Porównanie wartości ciśnienia górnego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem RC318

Tabela Z. 123. Tabelaryczne zestawieniewartości ciśnienia górnego obiegu nadkrytycznego i podkrytycznego dla siłowni z czynnikiem RC318

	Obieg nad	Obieg podkrytyczny				
temperatura	temperatura	ciśnienie	Wartość ciśnienia	temperatura	wartość ciśnienia	
źródła ciepła	pary	górne górnego		pary	górnego	
[°C]	[°C]		[MPa]	[°C]	[MPa]	
	135	minimalne	2,7785			
140	135	pośrednie	3,3947			
	135	graniczne	4,0108	113	2,6574	
160	155	minimalne	2,7785			
	155	pośrednie	6,2077			
	155	graniczne	9,6368			

L. Czynnik R236fa

W przypadku czynnika R236fa jak przedstawiono na rysunkach Z.60. oraz Z.61. zarówno sprawność termiczna jak i moc obiegu nadkrytycznego we wszystkich możliwych do zrealizowania wariantach obiegu jest wyższa w stosunku do obiegu podkrytycznego.

Rysunek Z. 60. Porównanie sprawności termicznej obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R236fa

Rysunek Z. 61. Porównanie mocy obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R236fa

Porównując wartości mocy pompowania w obiegu nadkrytycznym oraz podkrytycznym, co zostało uczynione na rysunku Z.62., można zauważyć, że wielkość ta w obiegu nadkrytycznym jest niższa jedynie w przypadku wariantu minimalnego ciśnienia górnego. W pozostałych wariantach tj. w wariancie ciśnienia pośredniego oraz granicznego wartość pracy pompowania przewyższa tę uzyskaną w przypadku obiegu podkrytycznego.

Dodatkowo na uwagę zasługuje fakt, że różnica wartości mocy pompowania między wariantem obiegu nadkrytycznego z ciśnieniem pośrednim oraz temperaturą pary wynoszącą t_{par}=135°C a obiegiem podkrytycznym jest minimalna.

Rysunek Z. 62. Porównanie mocy pompowania obiegu nadkrytycznego i podkrytycznego siłowni z czynnikiem R236fa

Ponadto na rysunkuZ.63. przedstawiono porównanie natężenia przepływu czynnika roboczego w układzie nadkrytycznym oraz podkrytycznym. Jak można zauważyć wszystkie wartości uzyskane dla obiegu nadkrytycznego są niższe w stosunku do tych uzyskanych dla obiegu podkrytycznego.

Rysunek Z. 63. Porównanie natężenia przepływu czynnika roboczego obiegu nadkrytycznego i podkrytycznego siłowni z czynnikiem R236fa

Na rysunku Z.64. oraz w tabeli Z.124. przedstawiono porównanie wartości ciśnień górnych uzyskanych we wszystkich możliwych do zrealizowania wariantach obiegu nadkrytycznego z wartością uzyskaną dla obiegu podkrytycznego. Jak można zauważyć wszystkie wartości ciśnienia górnego w obiegu nadkrytycznym są wyższe w stosunku do obiegu podkrytycznego.

Rysunek Z. 64. Porównanie wartości ciśnienia górnego dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem R236fa

Tabela Z. 124. Porównanie wartości ciśnienia górnego obiegu nadkrytycznego i podkrytycznego siłowni z czynnikiem R236fa

	Obieg nadl	Obieg podkrytyczny				
temperatura	temperatura	peratura ciśnienie Wartość ciśnienia 1		temperatura	wartość ciśnienia	
źródła ciepła	pary	górne górnego		pary	górnego	
[°C]	[°C]		[MPa]	[°C]	[MPa]	
	135	minimalne	3,201			
140	135	pośrednie	3,4058			
	135	graniczne	3,6105	171	2,9647	
160	155	minimalne	3,201	121		
	155	pośrednie	4,312			
	155	graniczne	5,423			

M. Izobutan

Na rysunkach Z.65. oraz Z.66. przedstawiono porównanie sprawności oraz mocy obiegu nadkrytycznego oraz podkrytycznego dla czynnika izobutan.

Rysunek Z. 65. Porównanie sprawności termicznej obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem izobutanem

Rysunek Z. 66. Porównanie mocy obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem izobutan

Jak można zauważyć zarówno sprawność jak i moc obiegu nadkrytycznego są wyższe w stosunku do obiegu podkrytycznego.

Na rysunku Z.67. z kolei przedstawiono porównanie mocypompowania pomiędzy obiegiem podkrytycznym oraz nadkrytycznym. Jak można zauważyć wartość ta w przypadku wariantu ciśnienia minimalnego obiegu nadkrytycznego jest niższa

w stosunku do obiegu podkrytycznego, oraz wyższa w przypadku wariantów ciśnienia pośredniego oraz granicznego.

Rysunek Z. 67. Porównanie mocy pompowania dla obiegu nadkrytycznego i podkrytycznego w siłowni z czynnikiem izobutan

Na rysunku Z.68. przedstawiono porównanie natężenia przepływu czynnika roboczego w obiegu nadkrytycznym względem obiegu podkrytycznego. Wykres na rysunku pokazuje, że wartość natężenia przepływu czynnika roboczego we wszystkich możliwych do zrealizowania wariantach obiegu nadkrytycznego jest niższa w stosunku do obiegu podkrytycznego.

Rysunek Z. 68. Porównanie natężenia przepływu czynnika roboczego obiegu nadkrytycznego i podkrytycznego siłowni z czynnikiem izobutan

Następnie na rysunku Z.69. oraz w tabeli Z.125. przedstawiono porównanie wartości ciśnień górnych występujących w obu obiegach. Jak można zauważyć wszystkie wartości z obiegu nadkrytycznego przewyższają te występujące w obiegu podkrytycznym.

Rysunek Z. 69. Porównanie wartości ciśnienia górnego obiegu nadkrytycznego i podkrytycznego siłowni z czynnikiem izobutanem

Tabela Z. 125. Tabelaryczne zestawienie wartości ciśnienia górnego obiegu nadkrytycznego i podkrytycznego
siłowni z czynnikiem izobutan

	Obieg nadl	Obieg podkrytyczny				
temperatura	temperatura ciśnienie warte		wartość ciśnienia	temperatura	wartość ciśnienia	
źródła ciepła	pary	górne	górnego	pary	górnego	
[°C]	[°C]		[MPa]	[°C]	[MPa]	
160	155	minimalne	3,63		3,4142	
	155	pośrednie	4,1883	131		
	155	graniczne	4,7467			

N. Butan

Na rysunkach Z.70. oraz Z.71. przedstawiono porównanie sprawności oraz mocy obiegu nadkrytycznego oraz podkrytycznego dla czynnika Butan. Jak można zauważyć zarówno sprawność jak i moc obiegu nadkrytycznego są wyższe w stosunku do obiegu podkrytycznego.

Rysunek Z. 70. Porównanie sprawności termicznej obiegu nadkrytycznego i podkrytycznego siłowni z czynnikiem butan

Porównując wartości pracy pompowania w obiegu nadkrytycznym oraz podkrytycznym, co zostało uczynione na rysunku Z.72., można zauważyć, że wielkość ta w obiegu nadkrytycznym w stosunku do obiegu podkrytycznego jest wyższa we wszystkich wariantach ciśnienia górnego i temperatury pary na wlocie do turbiny.

Rysunek Z. 72. Porównanie mocypompowania obiegu nadkrytycznego i podkrytycznego siłowni z czynnikiem butan

Ponadto analizując rysunekZ.73., na którym porównano wartość natężenia przepływu czynnika roboczego pomiędzy obiegiem nadkrytycznym oraz podkrytycznym można zauważyć, że wielkość ta jest wyższa w obiegu podkrytycznym.

Rysunek Z. 73. Porównanie natężenia przepływu czynnika roboczego obiegu nadkrytycznego i podkrytycznego siłowni z czynnikiem butan

Następnie na rysunku Z.74. oraz w tabeli Z.126. przedstawiono porównanie wartości ciśnień górnych występujących w obiegu nadkrytycznym oraz podkrytycznym. Jak można zauważyć wszystkie wartości ciśnienia górnego w obiegu nadkrytycznym przewyższają tę występującą w obiegu podkrytycznym

Z tego względu można przypuszczać, że wszystkie warianty obiegu nadkrytycznego z czynnikiem Butan zostały zrealizowane w sposób poprawny.

Rysunek Z. 74. Porównanie wartości ciśnienia górnego obiegu nadkrytycznego i podkrytycznego siłowni z czynnikiem butan

Tabela Z. 126. Tabelaryczne zestawieniewartości ciśnienia górnego obiegu nadkrytycznego i podkrytycznego siłowni z czynnikiem butan

	Obieg nad	Obieg podkrytyczny				
temperatura	temperatura ciśnienie Wartość		Wartość ciśnienia	temperatura	wartość ciśnienia	
źródła ciepła	pary	górne	górnego	pary	górnego	
[°C]	[°C]		[MPa]	[°C]	[MP]	
160	155	minimalne	3,797		3,5561	
	155	pośrednie	3,7998	148		
	155	graniczne	3,8026			

O. Porównanie obiegu nadkrytycznego i podkrytycznego przy tej samej temperaturze pary

Poniżej na rysunkach Z.75. – Z.78. przedstawiono porównanie sprawności (rys. Z.75.), mocy (rys. Z.76.), natężenia przepływu (rys. Z.77.) oraz pracy pompowania (rys. Z.78.) między obiegiem nadkrytycznym pracującym z czynnikami: R41, R125, R143a oraz R32 a obiegiem podkrytycznym pracującym z czynnikami: R143a, R227ea oraz R161.

Czynniki zostały dobrane w taki sposób aby możliwe było zrealizowanie obu obiegów, zarówno nadkrytycznego jak i podkrytycznego przy tej samej temperaturze pary na wlocie do turbiny, która w tym przypadku wynosi t_{par}=95°C.

Analiza została przeprowadzona w celu sprawdzenia stosowności zastosowania obiegu nadkrytycznego przy niskiej temperaturze źródła ciepła, oraz by móc ocenić, czy lepszym rozwiązaniem jest zastosowanie obiegu nadkrytycznego, czy wybór czynnika roboczego o wyższej temperaturze krytycznej i realizacja obiegu podkrytycznego.

Rysunek Z. 75. Porównanie sprawności termicznych obiegunadkrytycznego i podkrytycznego przy tej samej temperaturze pary na wlocie do turbiny

Jak przedstawiono na rysunkuZ.75. realizacja obiegu podkrytycznego z wykorzystaniem czynników o wyższej temperaturze krytycznej pozwala uzyskać wyższe sprawności w porównaniu do obiegu nadkrytycznego przy tej samej temperaturze pary na wlocie do turbiny.

Rysunek Z. 76. Porównanie mocy obiegu nadkrytycznego i podkrytycznego przy tej samej temperaturze paryna wlocie do turbiny

Jak przedstawiono na rysunkuZ.76. realizacja obiegu podkrytycznego z wykorzystaniem czynników o wyższej temperaturze krytycznej pozwala uzyskać wyższe moce w porównaniu do obiegu nadkrytycznego przy tej samej temperaturze pary na wlocie do turbiny.

Rysunek Z. 77. Porównanie natężenia przepływu czynnika roboczego obiegu nadkrytycznego i podkrytycznego przy tej samej temperaturze pary

Jak przedstawiono na rysunkuZ.77. realizacja obiegu podkrytycznego z wykorzystaniem czynników o wyższej temperaturze krytycznej pozwala uzyskać niższe wartości natężenia

przepływu czynnika roboczego w porównaniu do obiegu nadkrytycznego przy tej samej temperaturze pary na wlocie do turbiny. Przykładem jest czynnik R161, dla którego uzyskano najniższe wartości tej wielkości. Jednakże nie ma jednej tendencji co do wartości natężenia przepływu.

Rysunek Z. 78. Porównanie pracy pompowania obiegu nadkrytycznego i podkrytycznego przy tej samej temperaturze pary

Jak przedstawiono na rysunkuZ.78. w większości rozpatrywanych przypadków realizacja obiegu podkrytycznego z wykorzystaniem czynników o wyższej temperaturze krytycznej pozwala uzyskać niższe wartości mocy pompowania w porównaniu do obiegu nadkrytycznego przy tej samej temperaturze pary na wlocie do turbiny.

P. Porównanie obiegu nadkrytycznego względem podkrytycznego z czynnikiem amoniak

Poniżej na rysunkach Z.79. – Z.90. przedstawiono porównanie mocy (rys. Z.79. – Z.81.), sprawności (rys. Z.82. – Z.84.), pracy pompowania (rys. Z.85. – Z.87.) oraz natężenia przepływu czynnika roboczego (rys. Z.88. – Z.90.) wszystkich możliwych do zrealizowania wariantów obiegu nadkrytycznego względem najkorzystniejszego wariantu wyników uzyskanych

dla siłowni podkrytycznej wykorzystującej amoniak jako czynnik roboczy, które stanowić będą poziom odniesienia przy tej analizie.

Analiza została przeprowadzona, ponieważ w trakcie obliczeń uzyskano wysokie wartości mocy oraz sprawności obiegu siłowni podkrytycznej wykorzystujące amoniak jako czynnik roboczy.

Temperatura pary amoniaku na wlocie do turbiny w tym wariancie wynosiła t_{par} =132°C (patrz tabela 13.).

Analizując rysunki Z.79. – Z.81. przedstawiające porównanie mocy obiegu nadkrytycznego oraz rysunki Z.82. – Z.84. przedstawiające porównanie sprawności obiegu nadkrytycznego względem obiegu podkrytycznego z amoniakiem jako czynnikiem roboczym można zauważyć, że zarówno moc jak i sprawność obiegu podkrytycznego jest wyższa od wyników uzyskanych dla obiegu nadkrytycznego.

Rysunek Z. 79. Porównanie mocy obiegu nadkrytycznego przy założeniu ciśnienia minimalnego względem obiegu podkrytycznego z czynnikiem amoniak

Rysunek Z. 80. Porównanie mocy obiegu nadkrytycznego przy założeniu ciśnienia pośredniego względem obiegu podkrytycznego z czynnikiem amoniak

Rysunek Z. 81. Porównanie mocy obiegu nadkrytycznego przy założeniu ciśnienia granicznego względem obiegu podkrytycznego z czynnikiem amoniak

Rysunek Z. 82. Porównanie sprawności obiegu nadkrytycznego przy założeniu ciśnienia minimalnego względem obiegu podkrytycznego z czynnikiem amoniak

Rysunek Z. 83. Porównanie sprawności obiegu nadkrytycznego przy założeniu ciśnienia pośredniego względem obiegu podkrytycznego z czynnikiem amoniak

Rysunek Z. 84. Porównanie sprawności obiegu nadkrytycznego przy założeniu ciśnienia granicznego względem obiegu podkrytycznego z czynnikiem amoniak

Analizując rysunek Z.85. przedstawiający porównanie mocy pompowania przy ciśnieniu minimalnym w obiegu nadkrytycznym względem obiegu podkrytycznego z amoniakiem jako czynnikiem roboczym można zauważyć, że moc pompowania w większości przypadków obiegu nadkrytycznego jest niższa względem poziomu odniesienia. Inaczej wyglądają wyniki na rysunku Z.86. przedstawiającym porównanie mocy pompowania przy ciśnieniu pośrednim, oraz na rysunku Z.87. przedstawiającym porównanie mocy pompowania przy ciśnieniu granicznym w obiegu nadkrytycznym względem poziomu odniesienia. Wówczas wszystkie prawidłowo zrealizowane warianty obiegu nadkrytycznego odznaczają się wyższą mocą pompy obiegowej w stosunku do obiegu podkrytycznego z amoniakiem jako czynnikiem roboczym.

Analizując porównanie natężenia przepływu przedstawione na rysunkach Z.88. – Z.90. można zauważyć, że we wszystkich wariantach obiegu nadkrytycznego wartość ta jest wyższa względem poziomu odniesienia.

Rysunek Z. 85. Porównanie mocypompowania obiegu nadkrytycznego przy założeniu ciśnienia minimalnego względem obiegu podkrytycznego z czynnikiem amoniak

Rysunek Z. 86. Porównanie mocypompowania obiegu nadkrytycznego przy założeniu ciśnienia pośredniego względem obiegu podkrytycznego z czynnikiem amoniak

Rysunek Z. 87. Porównanie mocy pompowania obiegu nadkrytycznego przy założeniu ciśnienia granicznego względem obiegu podkrytycznego z czynnikiem amoniak

Rysunek Z. 88. Porównanie natężenia przepływu czynnika roboczego obiegu nadkrytycznego przy założeniu ciśnienia minimalnego względem obiegu podkrytycznego z czynnikiem amoniak

Rysunek Z. 89. Porównanie natężenia przepływu czynnika roboczego obiegu nadkrytycznego przy założeniu ciśnienia pośredniego względem obiegu podkrytycznego z czynnikiem amoniak

Rysunek Z. 90. Porównanie natężenia przepływu czynnika roboczego obiegu nadkrytycznego przy założeniu ciśnienia granicznego względem obiegu podkrytycznego z czynnikiem amoniak

Rysunek Z. 91. Potrzeby własne siłowni w zależności od zadanego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej t_{n1}=95°C

Rysunek Z. 92. Potrzeby własne siłowni w zależności od zadanego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej t_{n1}=115°C

Rysunek Z. 93. Potrzeby własne siłowni w zależności od zadanego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej t_{n1}=135°C

Rysunek Z. 94. Potrzeby własne siłowni w zależności od zadanego ciśnienia górnego przy temperaturze pary na wlocie do turbiny wynoszącej t_{n1}=155°C

ZAŁĄCZNIK 12: WYNIKI OBLICZEŃ PRAC JEDNOSTKOWYCH POMPY, TURBINY I OBIEGU

	Ciśnienie minimalne (p _{min})							
	t _{n1}	qw	lt	lp	I _{C-R}			
czynnik	[°C]		[kJ/kg] lub [kWs	/kg]	<u>.</u>			
R41	95	315,53	20,42	2,89	17,53			
	115	350,79	23,04	2,89	20,15			
	135	383,79	25,36	2,89	22,47			
	95	135,71	15,27	1,73	13,54			
D125	115	157,52	17,45	1,73	15,72			
K125	135	178,18	19,34	1,73	17,61			
	155	198,52	21,02	1,73	19,29			
	95	174,35	23,20	2,54	20,66			
P1425	115	202,16	27,16	2,54	24,62			
N143a	135	227,63	30,42	2,54	27,88			
	155	252,35	33,32	2,54	30,78			
	95	236,55	35,93	4,08	31,85			
R27	115	268,97	43,80	4,08	39,72			
11.52	135	294,74	50,31	4,08	46,23			
	155	318,17	56,01	4,08	51,93			
	115	351,92	63,75	6,48	57,27			
Propylen	135	397,78	73,48	6,48	67,00			
	155	440,40	81,57	6,48	75,09			
B1234vf	115	153,35	28,59	3,03	25,56			
	135	183,54	34,93	3,03	31,90			
	115	179,28	33,88	2,76	31,12			
R134a	135	205,64	40,07	2,76	37,31			
	155	228,68	44,81	2,76	42,05			
	115	136,60	23,14	1,73	21,41			
R227ea	135	159,69	26,54	1,73	24,81			
	155	180,52	29,26	1,73	27,53			
R161	115	308,59	62,27	5,65	56,62			
R152a	135	276,73	62,12	4,30	57,82			
	155	307,84	71,86	4,30	67,56			
RC318	135	146,77	26,29	1,64	24,65			
	155	167,87	29,23	1,64	27,59			
R236fa	135	167,46	35,49	2,14	33,35			
125010	155	193,05	40,97	2,14	38,83			
Izobutan	155	403,40	97,29	5,91	91,38			
Butan	155	385,03	102,17	6,19	95,98			

		Ciśnienie pośre	dnie (p _{śr})		
ozunnik	t _{n1}	qw	l _t	l _p	I _{C-R}
CZYTITIK	[°C]		[kJ/kg] lub [kV	Vs/kg]	
R41	95	259,24	34,35	7,02	27,33
	115	269,74	47,12	9,89	37,23
	135	275,41	61,47	13,68	47,79
	95	121,05	17,05	2,52	14,53
D125	115	127,15	22,58	3,83	18,75
R125	135	124,15	29,26	6,88	22,38
	155	121,40	40,01	13,59	26,42
	95	163,97	23,89	3,02	20,87
D1425	115	177,04	30,89	4,04	26,85
K143a	135	183,14	38,73	5,80	32,93
	155	180,79	47,60	9,25	38,35
	95	248,80	35,48	3,58	31,90
22	115	264,67	44,29	4,32	39,97
K32	135	276,97	53,76	5,24	48,52
	155	286,83	63,99	6,39	57,60
	115	338,89	64,22	7,19	57,03
Propylen	135	361,59	78,19	8,94	69,25
	155	377,18	93,29	11,52	81,77
P1224.f	115	148,19	27,93	3,20	24,73
K1254yi	135	160,69	34,62	4,26	30,36
	115	176,27	33,66	2,87	30,79
R134a	135	189,90	40,81	3,57	37,24
	155	198,32	48,12	4,69	43,43
	115	128,96	22,87	1,97	20,90
R227ea	135	135,07	27,28	2,89	24,39
	155	128,99	32,89	6,50	26,39
R161	115	319,08	63,09	5,29	57,80
D1520	135	274,96	62,00	4,38	57,62
NISZa	155	290,56	72,65	5,27	67,38
DC219	135	134,93	26,18	2,05	24,13
RC318	155	130,25	29,65	3,93	25,72
Daacte	135	161,77	34,76	2,29	32,47
R2301d	155	174,31	40,77	2,96	37,81
Izobutan	155	378,11	95,60	6,92	88,68
Butan	155	384,74	102,09	6,19	95,90

Tabela Z. 128. Zestawienie wartości prac jednostkowych uzyskanych przy pośrednim ciśnieniu górnym

Ciśnienie graniczne (p _{gr})						
czuppik	t _{n1}	q _w	l _t	l _p	I _{C-R}	
CZYNNIK	[°C]		[kJ/kg]			
	95	208,12	37,59	11,07	26,52	
R41	115	208,12	51,09	16,68	34,41	
	135	208,12	66,50	24,02	42,48	
	95	104,80	16,51	3,30	13,21	
D125	115	104,80	22,06	5,90	16,16	
K125	135	104,80	31,68	11,85	19,83	
	155	104,80	49,30	24,81	24,49	
	95	152,51	23,57	3,49	20,08	
D142a	115	152,51	29,87	5,54	24,33	
N145a	135	152,51	37,66	9,00	28,66	
	155	152,51	49,55	15,75	33,80	
	95	260,40	34,37	3,08	31,29	
022	115	260,40	44,65	4,55	40,10	
1.52	135	260,40	55,01	6,39	48,62	
	155	260,40	65,63	8,68	56,95	
	115	324,99	63,67	7,89	55,78	
Propylen	135	324,99	76,04	11,38	64,66	
	155	324,99	89,82	16,52	73,30	
R1234vf	115	142,59	26,99	3,37	23,62	
1123491	135	142,59	32,11	5,49	26,62	
	115	173,10	33,31	2,98	30,33	
R134a	135	173,10	38,76	4,38	34,38	
	155	173,10	44,91	6,62	38,29	
	115	118,16	21,36	2,21	19,15	
R227ea	135	118,16	25,31	4,04	21,27	
	155	118,16	36,19	11,17	25,02	
R161	115	328,68	63,45	4,92	58,53	
R152a	135	273,16	61,87	4,45	57,42	
	155	273,16	70,85	6,23	64,62	
RC318	135	120,52	24,14	2,46	21,68	
	155	120,52	30,54	6,19	24,35	
R236fa	135	154,29	33,29	2,44	30,85	
	155	154,29	36,83	3,77	33,06	
Izobutan	155	343,82	87,96	7,94	80,02	
Butan	155	384,46	101,99	6,20	95,79	

Tahela 7 129 Zestawienie	nrac jednostkowycł	n uzyskanych nrzy g	zranicznym ciśnieniu go	hrnym
	pruc jeunostkowyci	i uzyskunych przy g	Stathezhynn cistherna ge	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ZAŁĄCZNIK 13: WYNIKI OBLICZEŃ PARAMETRÓW SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA RANKINE'A PRZY ZAŁOŻENIU ZMIENNEJ WARTOŚCI TEMPERATURY SKRAPLANIA.

	K41							
t _{n2} =t _{n3}	ṁn	Nt	Np	N _{C-R}	η	η		
[°C]	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]		
30	10,032	667,123	240,967	426,156	0,169513	16,95		
25	8,825	622,852	187,085	435,767	0,173336	17,33		
20	7,976	601,222	152,818	448,404	0,178363	17,84		
15	7,333	591,560	128,842	462,717	0,184056	18,41		
10	6,822	589,122	110,853	478,269	0,190242	19,02		
5	6,401	591,424	96,650	494,774	0,196807	19,68		

Tabela Z. 130. Wyniki obliczeń w wariancie ze zmienną temperaturą skraplania dla czynnika R41.

Tabela Z. 131. Wyniki obliczeń w wariancie ze zmienną temperaturą skraplania dla czynnika R125.

	R125								
tn2=tn3	ṁn	Nt	Np	Nc-r	η	η			
[°C]	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]			
30	19,445	958,622	482,422	476,200	0,189419	18,94			
25	18,329	931,661	440,995	490,666	0,195174	19,52			
20	17,376	913,471	407,474	505,997	0,201272	20,13			
15	16,544	901,639	379,350	522,289	0,207752	20,78			
10	15,812	894,819	355,777	539,042	0,214416	21,44			
5	15,156	891,502	334,806	556,696	0,221438	22,14			

Tabela Z. 132. Wyniki obliczeń w wariancie ze zmienną temperaturą skraplania dla czynnika R143a.

R143a								
tn2=tn3	ṁn	Nt	Np	N _{C-R}	η	η		
[°C]	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]		
30	13,494	668,610	212,525	456,085	0,181418	18,14		
25	12,810	667,283	194,587	472,696	0,188025	18,80		
20	12,208	669,733	179,092	490,641	0,195163	19,52		
15	11,678	674,744	166,175	508,569	0,202295	20,23		
10	11,198	681,941	154,193	527,749	0,209924	20,99		
5	10,766	690,833	144,045	546,789	0,217497	21,75		

Tabela Z. 133. Wyniki obliczeń w wariancie ze zmienną temperaturą skraplania dla czynnika R32.

R32							
t _{n2} =t _{n3}	m'n _n	Nt	Np	N _{C-R}	η	η	
[°C]	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]	
30	7,922	519,911	68,762	451,150	0,179455	17,95	
25	7,549	531,273	62,276	468,997	0,186554	18,66	
20	7,218	543,870	56,516	487,354	0,193856	19,39	
15	6,923	557,198	51,365	505,832	0,201206	20,12	
10	6,657	571,004	46,796	524,208	0,208515	20,85	
5	6,414	585,251	42,463	542,787	0,215906	21,59	

Propylen							
tn2=tn3	ṁn	Nt	Np	Nc-r	η	η	
[°C]	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]	
30	6,312	566,942	104,274	462,668	0,184037	18,40	
25	6,065	581,782	98,985	482,797	0,192043	19,20	
20	5,839	597,362	93,721	503,641	0,200334	20,03	
15	5,633	613,558	89,172	524,386	0,208586	20,86	
10	5,442	630,568	84,779	545,788	0,217100	21,71	
5	5,263	647,988	80,531	567,457	0,225719	22,57	

Tabela Z. 134. Wyniki obliczeń w wariancie ze zmienną temperaturą skraplania dla czynnika Propylen.

Tabela Z. 135. Wyniki obliczeń w wariancie ze zmienną temperaturą skraplania dla czynnika R1234yf.

R1234yf							
t _{n2} =t _{n3}	ṁn	Nt	Np	N _{C-R}	η	η	
[°C]	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]	
30	12,720	446,737	50,283	396,453	0,157698	15,77	
25	12,286	466,375	48,898	417,477	0,166061	16,61	
20	11,886	486,143	47,545	438,598	0,174462	17,45	
15	11,517	506,156	46,193	459,963	0,182961	18,30	
10	11,174	526,416	44,898	481,518	0,191534	19,15	
5	10,856	547,024	43,619	503,406	0,200241	20,02	

Tabela Z. 136. Wyniki obliczeń w wariancie ze zmienną temperaturą skraplania dla czynnika R134a.

R134a							
t _{n2} =t _{n3}	ṁn	Nt	Np	N _{C-R}	η	η	
[°C]	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]	
30	11,893	534,102	78,730	455,372	0,181134	18,11	
25	11,466	550,500	74,990	475,510	0,189145	18,91	
20	11,072	567,352	71,639	495,714	0,197181	19,72	
15	10,706	584,873	68,519	516,354	0,205391	20,54	
10	10,365	602,614	65,610	537,004	0,213605	21,36	
5	10,042	620,918	62,564	558,354	0,222098	22,21	

Tabela Z. 137. Wyniki obliczeń w wariancie ze zmienną temperaturą skraplania dla czynnika R227ea.

R227ea							
tn2=tn3	ṁn	Nt	Np	Nc-r	η	η	
[°C]	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]	
30	17,567	636,273	196,925	439,348	0,174761	17,48	
25	16,856	644,218	187,433	456,784	0,181696	18,17	
20	16,208	653,501	178,935	474,566	0,188769	18,88	
15	15,615	663,477	170,983	492,494	0,195901	19,59	
10	15,067	674,418	163,180	511,238	0,203356	20,34	
5	14,565	686,285	156,424	529,861	0,210764	21,08	

R161							
tn2=tn3	ṁn	Nt	Np	N _{C-R}	η	η	
[°C]	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]	
30	6,884	428,649	38,893	389,756	0,155034	15,50	
2:	6,687	452,277	38,514	413,762	0,164583	16,46	
20	6,503	475,736	38,106	437,630	0,174077	17,41	
1	6,330	499,078	37,475	461,603	0,183613	18,36	
10	6,169	522,455	37,014	485,440	0,193095	19,31	
	6,017	545,724	36,281	509,443	0,202642	20,26	

Tabela Z. 138. Wyniki obliczeń w wariancie ze zmienną temperaturą skraplania dla czynnika R161.

Tabela Z. 139. Wyniki obliczeń w wariancie ze zmienną temperaturą skraplania dla czynnika R152a.

R152a							
t _{n2} =t _{n3}		ṁ _n	Nt	Np	N _{C-R}	η	η
[°C]		[kg/s]	[kW]	[kW]	[kW]	[-]	[%]
	30	7,443	527,316	46,368	480,948	0,191308	19,13
	25	7,203	546,246	44,368	501,878	0,199633	19,96
	20	6,976	565,783	42,277	523,506	0,208236	20,82
	15	6,765	585,170	40,184	544,986	0,216781	21,68
	10	6,565	605,062	38,276	566,786	0,225452	22,55
	5	6,377	624,961	36,282	588,679	0,234160	23,42

Tabela Z. 140. Wyniki obliczeń w wariancie ze zmienną temperaturą skraplania dla czynnika RC318.

RC318							
tn2=tn3	ṁn	Nt	Np	N _{C-R}	η	η	
[°C]	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]	
30	17,353	529,976	107,418	422,557	0,168082	16,81	
25	16,700	542,412	102,203	440,209	0,175103	17,51	
20	16,104	555,589	98,235	457,354	0,181923	18,19	
15	15,552	569,208	93,935	475,273	0,189050	18,91	
10	15,043	583,371	90,108	493,263	0,196206	19,62	
5	14,572	598,335	86,705	511,631	0,203513	20,35	

Tabela Z. 141. Wyniki obliczeń w wariancie ze zmienną temperaturą skraplania dla czynnika R236fa.

R236fa							
tn2=tn3	ṁn	Nt	Np	Nc-r	η	η	
[°C]	[kg/s]	[kW]	[kW]	[kW]	[-]	[%]	
30	11,862	483,393	35,113	448,280	0,178314	17,83	
25	11,517	501,810	34,206	467,603	0,186000	18,60	
20	11,194	520,532	33,247	487,285	0,193828	19,38	
15	10,891	539,438	32,238	507,200	0,201750	20,18	
10	10,606	558,608	31,075	527,533	0,209838	20,98	
5	10,339	578,253	30,396	547,857	0,217922	21,79	

Izobutan							
tn2=tn3		ṁn	Nt	Np	N _{C-R}	η	η
[°C]		[kg/s]	[kW]	[kW]	[kW]	[-]	[%]
	30	5,386	514,875	37,269	477,606	0,189978	19,00
	25	5,248	534,613	36,369	498,245	0,198188	19,82
	20	5,119	554,583	35,576	519,006	0,206446	20,64
	15	4,998	574,814	34,783	540,031	0,214810	21,48
	10	4,883	595,321	33,887	561,434	0,223323	22,33
	5	4,775	616,086	33,089	582,997	0,231900	23,19

Tabela Z. 142. Wyniki obliczeń w wariancie ze zmienną temperaturą skraplania dla czynnika Izobutan.

Tabela Z. 143. Wyniki obliczeń w wariancie ze zmienną temperaturą skraplania dla	a czynnika Butan.
	,

				Butan			
tn2=tn3		ṁn	Nt	Np	N _{C-R}	η	η
[°C]		[kg/s]	[kW]	[kW]	[kW]	[-]	[%]
	30	5,227	533,992	32,352	501,640	0,199538	19,95
	25	5,096	553,548	31,545	522,002	0,207638	20,76
	20	4,974	573,367	30,837	542,530	0,215803	21,58
	15	4,858	593,304	30,022	563,282	0,224058	22,41
	10	4,749	613,577	29,204	584,373	0,232447	23,24
	5	4,645	634,063	28,570	605,493	0,240849	24,08

ZAŁĄCZNIK 14: ZMIANY SPRAWNOŚCI SIŁOWNI SPOWODOWANE PRZY DODATKOWEJ ANALIZIE WPŁYWU CIŚNIENIA GÓRNEGO DLA POSZCZEGÓLNYCH ANALIZOWANYCH PRZYPADKÓW.

Rysunek Z. 95. Wykres sprawności siłowni w funkcji przyjętej wartości ciśnienia górnego dla czynnika R1234yf przy temperaturze źródła ciepła wynoszącej 120°C.

Rysunek Z. 96. Wykres sprawności w funkcji przyjętej wartości ciśnienia górnego dla czynnika R1234yf przy temperaturze źródła ciepła wynoszącej 140°C.

Rysunek Z. 97. Wykres sprawności w funkcji przyjętej wartości ciśnienia górnego dla czynnika R227ea przy temperaturze źródła ciepła wynoszącej 140°C.

Rysunek Z. 98. Wykres sprawności w funkcji przyjętej wartości ciśnienia górnego dla czynnika R236fa przy temperaturze źródła ciepła wynoszącej 140°C.

Rysunek Z. 99. Wykres sprawności w funkcji przyjętej wartości ciśnienia górnego dla czynnika R236fa przy temperaturze źródła ciepła wynoszącej 160°C.

Rysunek Z. 100. Wykres sprawności w funkcji przyjętej wartości ciśnienia górnego dla czynnika Izobutan przy temperaturze źródła ciepła wynoszącej 160°C.

Rysunek Z. 101. Wykres sprawności w funkcji przyjętej wartości ciśnienia górnego dla czynnika Butan przy temperaturze źródła ciepła wynoszącej 160°C.

SPIS TABEL

TABELA Z. 1. PARAMETRY CZYNNIKA R41 PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
MINIMALNĄ (P _{MIN})
TABELA Z. 2. PARAMETRY CZYNNIKA R41 PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
POŚREDNIĄ (Pśr)
FABELA Z. 3. PARAMETRY CZYNNIKA R41 PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
GRANICZNĄ (P _{GR})
TABELA Z. 4. PARAMETRY CZYNNIKA R125 PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
MINIMALNĄ (P _{MIN})
TABELA Z. 5.PARAMETRY CZYNNIKA R125 PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
POŚREDNIĄ (P _{śr})
TABELA Z. 6.PARAMETRY CZYNNIKA R125 PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
GRANICZNĄ (P _{GR})5
TABELA Z. 7.PARAMETRY CZYNNIKA R143A PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
MINIMALNĄ (P _{MIN})
TABELA Z. 8.PARAMETRY CZYNNIKA R143APRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
POŚREDNIĄ (Pśr)
TABELA Z. 9.PARAMETRY CZYNNIKA R143A PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
GRANICZNĄ (P _{GR})6
TABELA Z. 10.PARAMETRY CZYNNIKA R32 PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
MINIMALNĄ (P _{MIN})6
TABELA Z. 11.PARAMETRY CZYNNIKA R32 PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
POŚREDNIĄ (Pśr)6
TABELA Z. 12.PARAMETRY CZYNNIKA R32 PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
GRANICZNĄ (P _{GR})
FABELA Z. 13.PARAMETRY CZYNNIKA PROPYLEN PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE
WARTOŚĆ MINIMALNĄ (P _{MIN})
FABELA Z. 14.PARAMETRY CZYNNIKA PROPYLEN PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE
WARTOŚĆ POŚREDNIĄ (Pśr)
FABELA Z. 15.PARAMETRY CZYNNIKA PROPYLEN PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE
WARTOŚĆ GRANICZNĄ (P _{GR})
TABELA Z. 16.PARAMETRY CZYNNIKA R1234YF PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
MINIMALNĄ (P _{MIN})
TABELA Z. 17.PARAMETRY CZYNNIKA R1234YF PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
POŚREDNIĄ (Pśr) 8
TABELA Z. 18.PARAMETRY CZYNNIKA R1234YF PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
GRANICZNĄ (P _{GR})
TABELA Z. 19.PARAMETRY CZYNNIKA R134A PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
MINIMALNĄ (P _{MIN})
TABELA Z. 20.PARAMETRY CZYNNIKA R134A PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
POŚREDNIĄ (Pśr)
TABELA Z. 21.PARAMETRY CZYNNIKA R134A PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
GRANICZNĄ (P _{GR})
TABELA Z. 22.PARAMETRY CZYNNIKA R227EA PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
MINIMALNĄ (P _{MIN})
TABELA Z. 23.PARAMETRY CZYNNIKA R227EA PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
POŚREDNIĄ (P _{śr})
TABELA Z. 24.PARAMETRY CZYNNIKA R227EA PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
GRANICZNĄ (P _{GR})

TABELA Z. 25.PARAMETRY CZYNNIKA R161 PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
MINIMALNĄ (P _{MIN})
TABELA Z. 26.PARAMETRY CZYNNIKA R161 PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
POŚREDNIĄ (Pśr) 11
TABELA Z. 27.PARAMETRY CZYNNIKA R161 PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
GRANICZNĄ (P _{GR})
TABELA Z. 28.PARAMETRY CZYNNIKA R152APRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
MINIMALNA (P _{MIN})
TABELA Z. 29.PARAMETRY CZYNNIKA R152A PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
POŚREDNIA (Pśr)
TABELA Z. 30. PARAMETRY CZYNNIKA R152A PRZY ZAŁOŻENIU. ŻE CIŚNIENIE GÓRNE PRZYJMUJE WARTOŚĆ
GRANICZNA (P _{GR})
TABELA Z. 31. PARAMETRY CZYNNIKA RC318 PRZY ZAŁOŻENIU. ŻE CIŚNIENIE GÓRNE PRZYIMUJE WARTOŚĆ
MINIMALNA (P _{MIN}) 13
TARELA Z 32 PARAMETRY CZYNNIKA RC318 PRZY ZAŁOŻENIU ŻE CIŚNIENIE GÓRNE PRZYIMUJE WARTOŚĆ
TARELA 7, 33 PARAMETRY CZYNNIKA RC318 PRZY ZAŁOŻENIU ŻE CIŚNIENIE GÓRNE PRZY IMI U WARTOŚĆ
GRANICZNA (Pcp)
ΤΑΡΕΙ Α 7 34 ΔΑΡΑΜΕΤΡΥ CZYNNIKA Ρ336ΕΛ ΔΡΖΥ ΖΑΣΟŻΕΝΙΙ ŻΕ CIŚNIENIE GÓPNE DPZYIMI LE WAPTOŚĆ
MINIMALNA (Daw)
ΤΔΡΕΙ Δ.Ζ. 35 ΡΔΡΔΜΕΤΡΥ CZYNNIKA R236EΔ PRZY ΖΔŁΟŻΕΝΙΙ ŻΕ CIŚNIENIE GÓRNE PRZYIMI I E WARTOŚĆ
ΤΑΡΕΙ Α 7. 36 ΔΑΡΑΜΕΤΡΥ ΟΖΥΝΝΙΚΑ Ρ336ΕΑ ΔΡΖΥ ΖΑΣΟΖΕΝΙΙ ΣΕ ΟΙΣΝΙΕΝΙΕ ΘΟΡΙΕ ΔΡΖΥΙΜΙ ΗΕ ΜΑΡΤΟΣΟ
CDANICZNA (D)
MADTOŚĆ MINIMALNA (D)
MADTOŚĆ DOŚDEDNUA (Dz.)
MADTOŚĆ CRANICZNA (D.)
WARIOSC GRANICZIVĄ (PGR)
AUNIMALNA (D)
ΙΟ
TABELA Z. 41. PARAMIETRY CZYNNIKA BUTAN PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GORNE PRZYJMUJE WARTOSC
ΡΟΣΚΕΔΝΙΑ (PSR)
TABELA Z. 42. PARAMIETRY CZYNNIKA BUTAN PRZY ZAŁOŻENIU, ŻE CIŚNIENIE GORNE PRZYJMUJE WARTOSC
TABELA Z. 43. PARAMETRY CZYNNIKA R41 W POSZCZEGOLNYCH PUNKTACH SIŁOWNI Z OBIEGIEM
TABELA Z. 44. PARAMETRY CZYNNIKA R125 W POSZCZEGOLNYCH PUNKTACH SIŁOWNI Z OBIEGIEM
PODKRYTYCZNYM
TABELA Z. 45. PARAMETRY CZYNNIKA R143A W POSZCZEGOLNYCH PUNKTACH SIŁOWNI Z OBIEGIEM
PODKRYTYCZNYM
TABELA Z. 46. PARAMETRY CZYNNIKA R32 W POSZCZEGOLNYCH PUNKTACH SIŁOWNI Z OBIEGIEM
PODKRYTYCZNYM
TABELA Z. 47. PARAMETRY CZYNNIKA PROPYLEN W POSZCZEGÓLNYCH PUNKTACH SIŁOWNI Z OBIEGIEM
PODKRYTYCZNYM
TABELA Z. 48. PARAMETRY CZYNNIKA R134A W POSZCZEGÓLNYCH PUNKTACH SIŁOWNI Z OBIEGIEM
PODKRYTYCZNYM
TABELA Z. 49. PARAMETRY CZYNNIKA R161 W POSZCZEGÓLNYCH PUNKTACH SIŁOWNI Z OBIEGIEM
PODKRYTYCZNYM

TABELA Z. 50. PARAMETRY CZYNNIKA R152A W POSZCZEGÓLNYCH PUNKTACH SIŁOWNI Z OBIEGIEM PODKRYTYCZNYM
TABELA Z. 51. PARAMETRY CZYNNIKA AMONIAK W POSZCZEGÓLNYCH PUNKTACH SIŁOWNI Z OBIEGIEM PODKRYTYCZNYM
TABELA Z. 52. PARAMETRY CZYNNIKA R1234YF W POSZCZEGÓLNYCH PUNKTACH SIŁOWNI Z OBIEGIEM PODKRYTYCZNYM 29
TABELA Z. 53. PARAMETRY CZYNNIKA R227EA W POSZCZEGÓLNYCH PUNKTACH UKŁADU SIŁOWNI Z OBIEGIEM PODKRYTYCZNYM
TABELA Z. 54. PARAMETRY CZYNNIKA RC318 W POSZCZEGÓLNYCH PUNKTACH UKŁADU SIŁOWNI Z OBIEGIEM PODKRYTYCZNYM
TABELA Z. 55. PARAMETRY CZYNNIKA R236FA W POSZCZEGÓLNYCH PUNKTACH SIŁOWNI Z OBIEGIEM PODKRYTYCZNYM 32
TABELA Z. 56. PARAMETRY CZYNNIKA IZOBUTAN W POSZCZEGÓLNYCH PUNKTACH SIŁOWNI Z OBIEGIEM PODKRYTYCZNYM 33
TABELA Z. 57. PARAMETRY CZYNNIKA BUTAN W POSZCZEGÓLNYCH PUNKTACH SIŁOWNI Z OBIEGIEM PODKRYTYCZNYM
TABELA Z. 58. WYNIKI OBLICZEŃ DLA PODKRYTYCZNEGO OBIEGU SIŁOWNI ORC Z CZYNNIKIEM R41
TABELA Z. 59. WYNIKI OBLICZEŃ DLA PODKRYTYCZNEGO OBIEGU SIŁOWNI ORC Z CZYNNIKIEM R125
TABELA Z. 61. WYNIKI OBLICZEŃ DLA PODKRYTYCZNEGO OBIEGU SIŁOWNI ORC Z CZYNNIKIEM R145A
TABELA Z. 62. WYNIKI OBLICZEŃ DLA PODKRYTYCZNEGO OBIEGU SIŁOWNI ORC Z CZYNNIKIEM PROPYLEN 38
TABELA Z. 63. WYNIKI OBLICZEŃ DLA PODKRYTYCZNEGO OBIEGU SIŁOWNI ORC Z CZYNNIKIEM R1234YF 38
TABELA Z. 64. WYNIKI OBLICZEŃ DLA PODKRYTYCZNEGO OBIEGU SIŁOWNI ORC Z CZYNNIKIEM R134A 39
TABELA Z. 65. WYNIKI OBLICZEŃ DLA PODKRYTYCZNEGO OBIEGU SIŁOWNI ORC Z CZYNNIKIEM R227EA 39
TABELA Z. 66. WYNIKI OBLICZEŃ DLA PODKRYTYCZNEGO OBIEGU SIŁOWNI ORC Z CZYNNIKIEM R161 39
TABELA Z. 67. WYNIKI OBLICZEŃ DLA PODKRYTYCZNEGO OBIEGU SIŁOWNI ORC Z CZYNNIKIEM R152A 40
TABELA Z. 68. WYNIKI OBLICZEŃ DLA PODKRYTYCZNEGO OBIEGU SIŁOWNI ORC Z CZYNNIKIEM RC318 40
TABELA Z. 69. WYNIKI OBLICZEŃ DLA PODKRYTYCZNEGO OBIEGU SIŁOWNI ORC Z CZYNNIKIEM R236FA 40
TABELA Z. 70. WYNIKI OBLICZEŃ DLA PODKRYTYCZNEGO OBIEGU SIŁOWNI ORC Z CZYNNIKIEM AMONIAK 43
TABELA Z. 71. WYNIKI OBLICZEŃ DLA PODKRYTYCZNEGO OBIEGU SIŁOWNI ORC Z CZYNNIKIEM IZOBUTAN 4:
TABELA Z. 72. WYNIKI OBLICZEŃ DLA PODKRYTYCZNEGO OBIEGU SIŁOWNI ORC Z CZYNNIKIEM BUTAN 42
TABELA Z. 73. WŁASCIWOSCI TERMODYNAMICZNE CZYNNIKA R41 DLA WARIANTU ZE ZMIENNA
TABELA Z. 74. WŁASCIWOSCI TERMODYNAMICZNE CZYNNIKA R125 DLA WARIANTU ZE ZMIENNA
TABELA Z. 75. WŁASCIWOSCI TERINODTNAWICZINE CZTNNIKA KI45A DLA WARIANTO ZE ZWIENNA TEMDERATURA SKRADI ANIA
TABELA 7, 76, WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA R32 DI A WARIANTU ZE ZMIENNA
TEMPERATURA SKRAPI ANIA
TABELA Z. 77. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA PROPYLEN DLA WARIANTU ZE ZMIENNA
TEMPERATURA SKRAPLANIA
TABELA Z. 78. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA R1234YF DLA WARIANTU ZE ZMIENNA
TEMPERATURĄ SKRAPLANIA
TABELA Z. 79. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA R134A DLA WARIANTU ZE ZMIENNA
TEMPERATURĄ SKRAPLANIA
TABELA Z. 80. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA R227EA DLA WARIANTU ZE ZMIENNA
TEMPERATURĄ SKRAPLANIA
TABELA Z. 81. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA R161 DLA WARIANTU ZE ZMIENNA
TEMPERATURĄ SKRAPLANIA

TABELA Z. 82. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA R152A DLA WARIANTU ŻE ZMIENNA
TEMPERATURĄ SKRAPLANIA
TABELA Z. 83. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA RC318 DLA WARIANTU ZE ZMIENNA
TEMPERATURĄ SKRAPLANIA
TABELA Z. 84. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA R236FA DLA WARIANTU ZE ZMIENNA
TEMPERATURĄ SKRAPLANIA
TABELA Z. 85. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA IZOBUTAN DLA WARIANTU ZE ZMIENNA
TEMPERATURĄ SKRAPLANIA
TABELA Z. 86. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA BUTAN DLA WARIANTU ZE ZMIENNA
TEMPERATURĄ SKRAPLANIA
TABELA Z. 87. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA R1234YF DLA DODATKOWYCH WARIANTÓW
CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ T _{PAR} =115°C53
TABELA Z. 88. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA R1234YF DLA DODATKOWYCH WARIANTÓW
CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ TPAR=135°C
TABELA Z. 89. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA R227EA DLA DODATKOWYCH WARIANTÓW
CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ TPAR=135°C
TABELA Z. 90. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA R236FA DLA DODATKOWYCH WARIANTÓW
CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ TPAR=135°C
TABELA Z. 91. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA R236FA DLA DODATKOWYCH WARIANTÓW
CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ TPAR=155°C
TABELA Z. 92. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA IIZOBUTAN DLA DODATKOWYCH
WARIANTÓW CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY
WYNOSZĄCEJ TPAR=155°C
 WYNOSZĄCEJ TPAR=155°C TABELA Z. 93. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA BUTAN DLA DODATKOWYCH WARIANTÓW CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ TPAR=155°C TABELA Z. 94. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU MINIMALNEGO CIŚNIENIA GÓRNEGO TABELA Z. 95. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU POŚREDNIEGO CIŚNIENIA GÓRNEGO TABELA Z. 96. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA - RANKINE'A PRZY ZAŁOŻENIU POŚREDNIEGO CIŚNIENIA GÓRNEGO TABELA Z. 96. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA - RANKINE'A PRZY ZAŁOŻENIU GRANICZNEGO CIŚNIENIA GÓRNEGO TABELA Z. 97WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 95°C GO TABELA Z. 98WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 115°C
 WYNOSZĄCEJ TPAR=155°C TABELA Z. 93. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA BUTAN DLA DODATKOWYCH WARIANTÓW CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ TPAR=155°C TABELA Z. 94. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU MINIMALNEGO CIŚNIENIA GÓRNEGO TABELA Z. 95. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU POŚREDNIEGO CIŚNIENIA GÓRNEGO TABELA Z. 96. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU POŚREDNIEGO CIŚNIENIA GÓRNEGO TABELA Z. 96. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA - RANKINE'A PRZY ZAŁOŻENIU GRANICZNEGO CIŚNIENIA GÓRNEGO TABELA Z. 97WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 95°C GO TABELA Z. 99WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 115°C GO TABELA Z. 99WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 115°C GO
WYNOSZĄCEJ TPAR=155°C 55 TABELA Z. 93. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA BUTAN DLA DODATKOWYCH WARIANTÓW CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ TPAR=155°C
 WYNOSZĄCEJ TPAR=155°C TABELA Z. 93. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA BUTAN DLA DODATKOWYCH WARIANTÓW CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ TPAR=155°C TABELA Z. 94. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU MINIMALNEGO CIŚNIENIA GÓRNEGO TABELA Z. 95. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU POŚREDNIEGO CIŚNIENIA GÓRNEGO TABELA Z. 96. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU POŚREDNIEGO CIŚNIENIA GÓRNEGO TABELA Z. 96. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA - RANKINE'A PRZY ZAŁOŻENIU GRANICZNEGO CIŚNIENIA GÓRNEGO TABELA Z. 97WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 95°C. GO TABELA Z. 98WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 115°C. GO TABELA Z. 99WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 115°C. GO TABELA Z. 99WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 115°C. GO TABELA Z. 100WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 115°C. GO TABELA Z. 100WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO
 WYNOSZĄCEJ TPAR=155°C STABELA Z. 93. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA BUTAN DLA DODATKOWYCH WARIANTÓW CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ TPAR=155°C TABELA Z. 94. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU MINIMALNEGO CIŚNIENIA GÓRNEGO TABELA Z. 95. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU POŚREDNIEGO CIŚNIENIA GÓRNEGO TABELA Z. 96. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU POŚREDNIEGO CIŚNIENIA GÓRNEGO TABELA Z. 96. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA - RANKINE'A PRZY ZAŁOŻENIU GRANICZNEGO CIŚNIENIA GÓRNEGO TABELA Z. 97WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 95°C GO TABELA Z. 98WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 115°C GO TABELA Z. 99WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 115°C GO TABELA Z. 99WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 115°C GO TABELA Z. 100WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 135°C GO TABELA Z. 100WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 135°C
 WYNOSZĄCEJ TPAR=155°C TABELA Z. 93. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA BUTAN DLA DODATKOWYCH WARIANTÓW CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ TPAR=155°C TABELA Z. 94. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU MINIMALNEGO CIŚNIENIA GÓRNEGO TABELA Z. 95. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU POŚREDNIEGO CIŚNIENIA GÓRNEGO SZ TABELA Z. 96. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU POŚREDNIEGO CIŚNIENIA GÓRNEGO SZ TABELA Z. 96. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA -RANKINE'A PRZY ZAŁOŻENIU GRANICZNEGO CIŚNIENIA GÓRNEGO SZ TABELA Z. 96. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA -RANKINE'A PRZY ZAŁOŻENIU GRANICZNEGO CIŚNIENIA GÓRNEGO SZ TABELA Z. 96. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA -RANKINE'A PRZY ZAŁOŻENIU GRANICZNEGO CIŚNIENIA GÓRNEGO SZ TABELA Z. 96. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA -RANKINE'A PRZY ZAŁOŻENIU GRANICZNEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 95°C. GO TABELA Z. 98WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 135°C. GO TABELA Z. 100WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 135°C. GO TABELA Z. 101WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCE
WYNOSZĄCEJ TPAR=155°C 55 TABELA Z. 93. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA BUTAN DLA DODATKOWYCH WARIANTÓW CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ TPAR=155°C
WYNOSZĄCEJ TPAR=155°C 55 TABELA Z. 93. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA BUTAN DLA DODATKOWYCH WARIANTÓW CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ TPAR=155°C
 WYNOSZĄCEJ TPAR=155°C 55 TABELA Z. 93. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA BUTAN DLA DODATKOWYCH WARIANTÓW CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ TPAR=155°C 56 TABELA Z. 94. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU MINIMALNEGO CIŚNIENIA GÓRNEGO TABELA Z. 95. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU POŚREDNIEGO CIŚNIENIA GÓRNEGO TABELA Z. 96. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU POŚREDNIEGO CIŚNIENIA GÓRNEGO TABELA Z. 96. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA - RANKINE'A PRZY ZAŁOŻENIU GRANICZNEGO CIŚNIENIA GÓRNEGO TABELA Z. 97WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 95°C. 60 TABELA Z. 99WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 115°C. 61 TABELA Z. 99WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 155°C. 62 TABELA Z. 100WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 155°C. 63 TABELA Z. 101WARTOŚCI RÓŻNIC SPRAWNOŚCI OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 155°C. 64 CABELA Z. 102WARTOŚCI RÓŻNIC SPRAWNOŚCI OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 155°C. 65 TABELA Z. 102WARTOŚCI RÓŻNIC SPRAWNOŚCI OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ
 WYNOSZĄCEJ TPAR=155°C STABELA Z. 93. WŁAŚCIWOŚCI TERMODYNAMICZNE CZYNNIKA BUTAN DLA DODATKOWYCH WARIANTÓW CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ TPAR=155°C Stabela Z. 94. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU MINIMALNEGO CIŚNIENIA GÓRNEGO STABELA Z. 95. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU POŚREDNIEGO CIŚNIENIA GÓRNEGO STABELA Z. 96. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA- RANKINE'A PRZY ZAŁOŻENIU POŚREDNIEGO CIŚNIENIA GÓRNEGO STABELA Z. 96. WYNIKI OBLICZEŃ PARAMETRÓW PRACY SIŁOWNI ORC Z NADKRYTYCZNYM OBIEGIEM CLAUSIUSA - RANKINE'A PRZY ZAŁOŻENIU GRANICZNEGO CIŚNIENIA GÓRNEGO SZ TABELA Z. 97WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 95°C. GC TABELA Z. 99WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 115°C. GC TABELA Z. 99WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 155°C. G2 TABELA Z. 100WARTOŚCI RÓŻNIC MOCY OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 155°C. G2 TABELA Z. 101WARTOŚCI RÓŻNIC SPRAWNOŚCI OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 155°C. G2 TABELA Z. 102WARTOŚCI RÓŻNIC SPRAWNOŚCI OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 155°C. G2 TABELA Z. 102WARTOŚCI RÓŻNIC SPRAWNOŚCI OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 155°C.<

TABELA Z. 104WARTOŚCI RÓŻNIC SPRAWNOŚCI OBIEGU W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA
GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 155°C
TABELA Z. 105WARTOŚCI RÓŻNIC NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO W ZALEŻNOŚCI OD
PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ
95°C64
TABELA Z. 106WARTOŚCI RÓŻNIC NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO W ZALEŻNOŚCI OD
PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ
115°C
TABELA Z. 107WARTOŚCI RÓŻNIC NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO W ZALEŻNOŚCI OD
PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ
135°C
TABELA Z. 108WARTOŚCI RÓŻNIC NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO W ZALEŻNOŚCI OD
PRZYJĘTEGO CIŚNIENIA GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ
155°C
TABELA Z. 109WARTOŚCI RÓŻNIC MOCY POMPOWANIA W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA
GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 95°C
TABELA Z. 110WARTOŚCI RÓŻNIC MOCY POMPOWANIA W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA
GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 115°C 66
TABELA Z. 111WARTOŚCI RÓŻNIC MOCY POMPOWANIA W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA
GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 135°C 67
TABELA Z. 112WARTOŚCI RÓŻNIC MOCY POMPOWANIA W ZALEŻNOŚCI OD PRZYJĘTEGO CIŚNIENIA
GÓRNEGO PRZY TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ 155°C 67
TABELA Z. 113. PORÓWNANIE WARTOŚCI CIŚNIENIA GÓRNEGO DLA OBIEGU NADKRYTYCZNEGO I
PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R41
TABELA Z. 114. PORÓWNANIE WARTOŚCI CIŚNIENIA GÓRNEGO DLA OBIEGU NADKRYTYCZNEGO I
PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R12573
TABELA Z. 115. PORÓWNANIE WARTOŚCI CIŚNIENIA GÓRNEGO OBIEGU NADKRYTYCZNEGO I
PODKRYTYCZNEGO SIŁOWNI Z CZYNNIKIEM R143A76
TABELA Z. 116. POROWNANIE WARTOSCI CISNIEN GORNYCH DLA OBIEGU NADKRYTYCZNEGO I
PODKRYTYCZNEGOW SIŁOWNI Z CZYNNIKIEM R32
TABELA Z. 117. TABELARYCZNE POROWNANIE WARTOSCI CISNIENIA GORNEGO DLA OBIEGU
NADKRYTYCZNEGO I PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM PROPYLEN
TABELA Z. 118. POROWNANIE WARTOSCI CISNIENIA GORNEGO OBIEGU NADKRYTYCZNEGO I
PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R1234YF
TABELA Z. 119. TABELARYCZNE ZESTAWIENIE WARTOSCI CISNIENIA GORNEGO DLA OBIEGU
NADKRYTYCZNEGO I PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R134A 88
TABELA Z. 120. TABELARYCZNE ZESTAWIENIE WARTOSCI CISNIENIA GORNEGO DLA OBIEGU
NADKRYTYCZNEGO I PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R227EA
TABELA Z. 121. POROWNANIE WARTOSCI CISNIENIA GORNEGO DLA OBIEGU NADKRYTYCZNEGO I
PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R161
TABELA Z. 122. TABELARYCZNE ZESTAWIENIE WARTOSCI CISNIENIA GORNEGO DLA OBIEGU
NADKRYTYCZNEGO I PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R152A
TABELA Z. 123. TABELARYCZNE ZESTAWIENIEWARTOSCI CISNIENIA GORNEGO OBIEGU NADKRYTYCZNEGO I
PODKRYTYCZNEGO DLA SIŁOWNI Z CZYNNIKIEM RC318
TABELA Z. 124. POROWNANIE WARTOSCI CISNIENIA GORNEGO OBIEGU NADKRYTYCZNEGO I
IABELA Z. 125. IABELARYCZNE ZESTAWIENIE WARTOSCI CISNIENIA GORNEGO OBIEGU NADKRYTYCZNEGO I
PUDKKYTYCZNEGU SIŁUWNI Z CZYNNIKIEM IZUBUTAN
TABELA Z. 126. TABELARYCZNE ZESTAWIENIEWARTOSCI CISNIENIA GORNEGO OBIEGU NADKRYTYCZNEGO I
PODRKYTYCZNEGO SIŁOWNI Z CZYNNIKIEM BUTAN109
TABELA Z. 127. ZESTAWIENIE PRAC JEDNOSTKOWYCH UZYSKANYCH DLA OBIEGU PRZY MINIMALNYM

CIŚNIENIU GÓRNYM
TABELA Z. 128. ZESTAWIENIE WARTOŚCI PRAC JEDNOSTKOWYCH UZYSKANYCH PRZY POŚREDNIM
CIŚNIENIU GÓRNYM12
TABELA Z. 129. ZESTAWIENIE PRAC JEDNOSTKOWYCH UZYSKANYCH PRZY GRANICZNYM CIŚNIENIU
GÓRNYM
TABELA Z. 130. WYNIKI OBLICZEŃ W WARIANCIE ZE ZMIENNĄ TEMPERATURĄ SKRAPLANIA DLA CZYNNIKA
R4112
TABELA Z. 131. WYNIKI OBLICZEŃ W WARIANCIE ZE ZMIENNĄ TEMPERATURĄ SKRAPLANIA DLA CZYNNIKA
R12512
TABELA Z. 132. WYNIKI OBLICZEŃ W WARIANCIE ZE ZMIENNĄ TEMPERATURĄ SKRAPLANIA DLA CZYNNIKA
R143A12
TABELA Z. 133. WYNIKI OBLICZEŃ W WARIANCIE ZE ZMIENNĄ TEMPERATURĄ SKRAPLANIA DLA CZYNNIKA
R3212
TABELA Z. 134. WYNIKI OBLICZEŃ W WARIANCIE ZE ZMIENNĄ TEMPERATURĄ SKRAPLANIA DLA CZYNNIKA
PROPYLEN
TABELA Z. 135. WYNIKI OBLICZEŃ W WARIANCIE ZE ZMIENNĄ TEMPERATURĄ SKRAPLANIA DLA CZYNNIKA
R1234YF
TABELA Z. 136. WYNIKI OBLICZEŃ W WARIANCIE ZE ZMIENNĄ TEMPERATURĄ SKRAPLANIA DLA CZYNNIKA
R134A12
TABELA Z. 137. WYNIKI OBLICZEŃ W WARIANCIE ZE ZMIENNĄ TEMPERATURĄ SKRAPLANIA DLA CZYNNIKA
R227EA
TABELA Z. 138. WYNIKI OBLICZEŃ W WARIANCIE ZE ZMIENNĄ TEMPERATURĄ SKRAPLANIA DLA CZYNNIKA
R161
TABELA Z. 139. WYNIKI OBLICZEŃ W WARIANCIE ZE ZMIENNĄ TEMPERATURĄ SKRAPLANIA DLA CZYNNIKA
R152A
TABELA Z. 140. WYNIKI OBLICZEŃ W WARIANCIE ZE ZMIENNĄ TEMPERATURĄ SKRAPLANIA DLA CZYNNIKA
RC318
TABELA Z. 141. WYNIKI OBLICZEŃ W WARIANCIE ZE ZMIENNĄ TEMPERATURĄ SKRAPLANIA DLA CZYNNIKA
R236FA
TABELA Z. 142. WYNIKI OBLICZEŃ W WARIANCIE ZE ZMIENNĄ TEMPERATURĄ SKRAPLANIA DLA CZYNNIKA
IZOBUTAN
TABELA Z. 143. WYNIKI OBLICZEŃ W WARIANCIE ZE ZMIENNĄ TEMPERATURĄ SKRAPLANIA DLA CZYNNIKA
BUTAN

SPIS RYSUNKÓW

RYSUNEK Z. 1. WYKRES MOCY OBIEGU SIŁOWNI PODKRYTYCZNEJ W ZALEŻNOŚCI OD TEMPERATURY PAR	RY
NA WLOCIE DO TURBINY	42
RYSUNEK Z. 2. WYKRES SPRAWNOŚCI TERMICZNEJ OBIEGU SIŁOWNI PODKRYTYCZNEJ W ZALEŻNOŚCI O	D
TEMPERATURY PARY NA WLOCIE DO TURBINY	43
RYSUNEK Z. 3. WYKRES MOCY POMPOWANIA SIŁOWNI PODKRYTYCZNEJ W ZALEŻNOŚCI OD TEMPERATU	JRY
PARY NA WLOCIE DO TURBINY	44
RYSUNEK Z. 4. WYKRES NATĘŻENIA PRZEPŁYWU MASOWEGO CZYNNIKA ROBOCZEGO SIŁOWNI	
PODKRYTYCZNEJ W ZALEŻNOŚCI OD TEMPERATURY PARY NA WLOCIE DO TURBINY	45
RYSUNEK Z. 5. PORÓWNANIE SPRAWNOŚCI TERMICZNEJ OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEG	30 60
	08
CZVNINIKIENA D41	60
	68
RYSUNEK Z. 7. POROWNANIE MOUT POMPOWANIA DLA OBIEGU NADKRYTYCZNEGU I PODKRYTYCZNEGU	J W
	69
RYSUNEK Z. 8. POROWNANIE NA IĘZENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO DLA OBIEGU	
	69
RYSUNEK Z. 9.POROWNANIE WARTOSCI CISNIENIA GORNEGO DLA OBIEGU NADKRYTYCZNEGO I	
PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R41.	70
RYSUNEK Z. 10. POROWNANIE SPRAWNOSCI TERMICZNEJ DLA OBIEGU NADKRYTYCZNEGO I	
PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R125	71
RYSUNEK Z. 11. PORÓWNANIE WARTOŚCI MOCY DLA OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO V	N
SIŁOWNI Z CZYNNIKIEM R125	71
RYSUNEK Z. 12. PORÓWNANIE MOCY POMPOWANIA DLA OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNE	GO
W SIŁOWNI Z CZYNNIKIEM R125	72
RYSUNEK Z. 13. PORÓWNANIE NATĘŻENIA PRZEPŁYWU MASOWEGO CZYNNIKA ROBOCZEGO W OBIEGU	I
NADKRYTYCZNYM I PODKRYTYCZNYM DLA SIŁOWNI Z CZYNNIKIEM R125	72
RYSUNEK Z. 14. PORÓWNANIE WARTOŚCI CIŚNIENIA GÓRNEGO W OBIEGU NADKRYTYCZNYM I	
PODKRYTYCZNYM DLA SIŁOWNI Z CZYNNIKIEM R125	73
RYSUNEK Z. 15. PORÓWNANIE SPRAWNOŚCI TERMICZNEJ DLA OBIEGU NADKRYTYCZNEGO I	
PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R143A	74
RYSUNEK Z. 16. PORÓWNANIE MOCY OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO DLA SIŁOWNI Z	
CZYNNIKIEM R143A	74
RYSUNEK Z. 17. PORÓWNANIE MOCY POMPOWANIA OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO V	N
SIŁOWNI Z CZYNNIKIEM R143A	75
RYSUNEK Z. 18. PORÓWNANIE NATĘŻENIA PRZEPŁYWU MASOWEGO CZYNNIKA ROBOCZEGO W OBIEGU	J
NADKRYTYCZNYM I PODKRYTYCZNYM DLA SIŁOWNI Z CZYNNIKIEM R143A	75
RYSUNEK Z. 19. PORÓWNANIE WARTOŚCI CIŚNIENIA GÓRNEGO DLA OBIEGU NADKRYTYCZNEGO I	
PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R143A	76
RYSUNEK Z. 20. PORÓWNANIE SPRAWNOŚCI TERMICZNEJ OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNE	GO
DLA SIŁOWNI Z CZYNNIKIEM R32	77
RYSUNEK Z. 21. PORÓWNANIE MOCY OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO DLA SIŁOWNI Z	
CZYNNIKIEM R32	77
RYSUNEK Z. 22. PORÓWNANIE MOCY POMPOWANIA OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO	
SIŁOWNI Z CZYNNIKIEM R32	78
RYSUNEK Z. 23. PORÓWNANIE NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO W OBIEGU	
NADKRYTYCZNYM I PODKRYTYCZNYM W SIŁOWNI Z CZYNNIKIEM R32	78
RYSUNEK Z. 24. PORÓWNANIE WARTOŚCI CIŚNIENIA GÓRNEGO DLA OBIEGU NADKRYTYCZNEGO I	
PODKRYTYCZNEGO DLA SIŁOWNI Z CZYNNIKIEM R32	79

RYSUNEK Z. 25. PORÓWNANIE SPRAWNOŚCI TERMICZNEJ OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO
SIŁOWNI Z CZYNNIKIEM ORGANICZNYM PROPYLENEM 80
RYSUNEK Z. 26. PORÓWNANIE MOCY OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO W SIŁOWNI Z
CZYNNIKIEM ROBOCZYM PROPYLENEM 80
RYSUNEK Z. 27. PORÓWNANIE MOCY POMPOWANIA DLAOBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO
W SIŁOWNI Z CZYNNIKIEM ROBOCZYM PROPYLENEM 81
RYSUNEK Z. 28. PORÓWNANIE NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO DLA OBIEGU
NADKRYTYCZNEGO I PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM PROPYLEN 81
RYSUNEK Z. 29. PORÓWNANIE WARTOŚCI CIŚNIENIA GÓRNEGO DLA OBIEGU NADKRYTYCZNEGO I
PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM PROPYLEN 82
RYSUNEK Z. 30. PORÓWNANIE SPRAWNOŚCI TERMICZNEJ DLA OBIEGU NADKRYTYCZNEGO I
PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R1234YF 83
RYSUNEK Z. 31. PORÓWNANIE MOCY OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO W SIŁOWNI Z
CZYNNIKIEM R1234YF
RYSUNEK Z. 32. POROWNANIE MOCY POMPOWANIA DLA OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO
RTSUNEK Z. 33. POROWNANIE NATĘŻENIA MASOWEGO PRZEPETWO CZTNNIKA ROBOCZEGO OBIEGO NADKOVTYCZNIECO U DODKOVTYCZNIECO W SIŁOWAU Z CZYNNIKIEM B1334VE
RYSUNEK Z. 34. POROWNANIE WARTOSCI CISNIENIA GORNEGO OBIEGU NADKRYTYCZNEGO T
RTSUNEK Z. 35. POROWNANIE SPRAWNOSCI TERMICZNEJ OBIEGU NADKRTI TCZNEGU I PODKRTI TCZNEGU
CTYNNIKIENA D124A
ATSONER 2. 57. POROWNANIE MOCT POWPOWANIA DLA OBIEGO NADARTI ICZNEGO I PODARTI ICZNEGO
PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R134A 88
RYSLINEK 7 41 PORÓWNANIE MOCY OBJEGLI NADKRYTYCZNEGO I PODKRYTYCZNEGO DLA SIŁOWNI Z
C7YNNIKIEM R227EA
RYSLINEK 7 42 PORÓWNANIE MOCY POMPOWANIA DI A ORIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO
W SIŁOWNI Z CZYNNIKIEM R227EA
RYSLINEK 7 43 PORÓWNANIE NATEŻENIA MASOWEGO PRZEPŁYWU CZYNNIKA ROBOCZEGO DLA OBIEGU
NADKRYTYCZNEGO I PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R227EA
RYSLINEK 7 44 PORÓWNANIE WARTOŚCI CIŚNIENIA GÓRNEGO DIA OBIEGU NADKRYTYCZNEGO I
PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R227EA 91
RYSLINEK 7 45 PORÓWNANIE SPRAWNOŚCI TERMICZNEL 92
RYSUNEK 7 46 PORÓWNANIE MOCY OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO W SIŁOWNI Z
CZYNNIKIEM R161
RYSUNEK Z. 47. PORÓWNANIE MOCY POMPOWANIA OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO
SIŁOWNI Z CZYNNIKIEM R161
RYSUNEK Z. 48. PORÓWNANIE NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO OBIEGU NADKRYTYCZNEGO
I PODKRYTYCZNEGO SIŁOWNI Z CZYNNIKIEM R161
RYSUNEK Z. 49. PORÓWNANIE WARTOŚCI CIŚNIENIA GÓRNEGO OBIEGU NADKRYTYCZNEGO I
PODKRYTYCZNEGO SIŁOWNI Z CZYNNIKIEM R161

RYSUNEK Z. 50. PORÓWNANIE SPRAWNOŚCI TERMICZNEJ DLA OBIEGU NADKRYTYCZNEGO I	
PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R152A	95
RYSUNEK Z. 51. PORÓWNANIE MOCY OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO W SIŁOWNI Z	
CZYNNIKIEM R152A	95
RYSUNEK Z. 52. PORÓWNANIE MOCY POMPOWANIA DLA OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNE W SIŁOWNI Z CZYNNIKIEM R152A	GO 96
RYSUNEK Z. 53. PORÓWNANIE NATEŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO DLA OBIEGU	
NADKRYTYCZNEGO I PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R152A	96
RYSUNEK Z. 54. PORÓWNANIE WARTOŚCI CIŚNIENIA GÓRNEGO DLA OBIEGU NADKRYTYCZNEGO I	
PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R152A	97
RYSUNEK Z. 55. PORÓWNANIE SPRAWNOŚCI TERMICZNEJ DLA OBIEGU NADKRYTYCZNEGO I	
PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM RC318	98
RYSUNEK Z. 56. PORÓWNANIE MOCY OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO W SIŁOWNI Z	
CZYNNIKIEM RC318	98
RYSUNEK Z. 57. PORÓWNANIE MOCY POMPOWANIA DLA OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEG W SIŁOWNI Z CZYNNIKIEM RC318	06 06
RYSLINEK Z 58 PORÓWNANIE NATEŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO DLA OBIEGU	
NADKRYTYCZNEGO I PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM RC318	99
RYSUNEK Z 59 PORÓWNANIE WARTOŚCI CIŚNIENIA GÓRNEGO DIA OBIEGU NADKRYTYCZNEGO I	
PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM RC318	100
RYSUNEK Z. 60. PORÓWNANIE SPRAWNOŚCI TERMICZNEJ OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEG	-00 GO
W SIŁOWNI Z CZYNNIKIEM R236FA	101
RYSUNEK Z. 61. PORÓWNANIE MOCY OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO W SIŁOWNI Z	101
CZYNNIKIEM R236EA	101
RYSUNEK Z. 62. PORÓWNANIE MOCY POMPOWANIA OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO	
SIŁOWNI Z CZYNNIKIEM R236FA	102
RYSUNEK Z. 63. PORÓWNANIE NATEŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO OBIEGU NADKRYTYCZNE	GO
I PODKRYTYCZNEGO SIŁOWNI Z CZYNNIKIEM R236FA	102
RYSUNEK Z. 64. PORÓWNANIE WARTOŚCI CIŚNIENIA GÓRNEGO DLA OBIEGU NADKRYTYCZNEGO I	
PODKRYTYCZNEGO W SIŁOWNI Z CZYNNIKIEM R236FA	103
RYSUNEK Z. 65. PORÓWNANIE SPRAWNOŚCI TERMICZNEJ OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEG	GO
W SIŁOWNI Z CZYNNIKIEM IZOBUTANEM	104
RYSUNEK Z. 66. PORÓWNANIE MOCY OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO W SIŁOWNI Z	
CZYNNIKIEM IZOBUTAN	104
RYSUNEK Z. 67. PORÓWNANIE MOCY POMPOWANIA DLA OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEG	30
W SIŁOWNI Z CZYNNIKIEM IZOBUTAN	105
RYSUNEK Z. 68. PORÓWNANIE NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO OBIEGU NADKRYTYCZNE	GO
I PODKRYTYCZNEGO SIŁOWNI Z CZYNNIKIEM IZOBUTAN	105
RYSUNEK Z. 69. PORÓWNANIE WARTOŚCI CIŚNIENIA GÓRNEGO OBIEGU NADKRYTYCZNEGO I	
PODKRYTYCZNEGO SIŁOWNI Z CZYNNIKIEM IZOBUTANEM	106
RYSUNEK Z. 70. PORÓWNANIE SPRAWNOŚCI TERMICZNEJ OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEG	GO
SIŁOWNI Z CZYNNIKIEM BUTAN	107
RYSUNEK Z. 71. PORÓWNANIE MOCY OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO SIŁOWNI Z	
CZYNNIKIEM BUTAN	107
RYSUNEK Z. 72. PORÓWNANIE MOCYPOMPOWANIA OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO	
SIŁOWNI Z CZYNNIKIEM BUTAN	108
RYSUNEK Z. 73. PORÓWNANIE NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO OBIEGU NADKRYTYCZNE	GO
I PODKRYTYCZNEGO SIŁOWNI Z CZYNNIKIEM BUTAN	108
RYSUNEK Z. 74. PORÓWNANIE WARTOŚCI CIŚNIENIA GÓRNEGO OBIEGU NADKRYTYCZNEGO I	
PODKRYTYCZNEGO SIŁOWNI Z CZYNNIKIEM BUTAN	109

RYSUNEK Z. 75. PORÓWNANIE SPRAWNOŚCI TERMICZNYCH OBIEGUNADKRYTYCZNEGO I PODKRYTYCZNEGO
PRZY TEJ SAMEJ TEMPERATURZE PARY NA WLOCIE DO TURBINY
RYSUNEK Z. 76. PORÓWNANIE MOCY OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO PRZY TEJ SAMEJ
TEMPERATURZE PARYNA WLOCIE DO TURBINY
RYSUNEK Z. 77. PORÓWNANIE NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO OBIEGU NADKRYTYCZNEGO
I PODKRYTYCZNEGO PRZY TEJ SAMEJ TEMPERATURZE PARY 111
RYSUNEK Z. 78. PORÓWNANIE PRACY POMPOWANIA OBIEGU NADKRYTYCZNEGO I PODKRYTYCZNEGO
PRZY TEJ SAMEJ TEMPERATURZE PARY
RYSUNEK Z. 79. PORÓWNANIE MOCY OBIEGU NADKRYTYCZNEGO PRZY ZAŁOŻENIU CIŚNIENIA
MINIMALNEGO WZGLĘDEM OBIEGU PODKRYTYCZNEGO Z CZYNNIKIEM AMONIAK 113
RYSUNEK Z. 80. PORÓWNANIE MOCY OBIEGU NADKRYTYCZNEGO PRZY ZAŁOŻENIU CIŚNIENIA
POŚREDNIEGO WZGLĘDEM OBIEGU PODKRYTYCZNEGO Z CZYNNIKIEM AMONIAK 114
RYSUNEK Z. 81. PORÓWNANIE MOCY OBIEGU NADKRYTYCZNEGO PRZY ZAŁOŻENIU CIŚNIENIA
GRANICZNEGO WZGLĘDEM OBIEGU PODKRYTYCZNEGO Z CZYNNIKIEM AMONIAK 114
RYSUNEK Z. 82. PORÓWNANIE SPRAWNOŚCI OBIEGU NADKRYTYCZNEGO PRZY ZAŁOŻENIU CIŚNIENIA
MINIMALNEGO WZGLĘDEM OBIEGU PODKRYTYCZNEGO Z CZYNNIKIEM AMONIAK 114
RYSUNEK Z. 83. PORÓWNANIE SPRAWNOŚCI OBIEGU NADKRYTYCZNEGO PRZY ZAŁOŻENIU CIŚNIENIA
POŚREDNIEGO WZGLĘDEM OBIEGU PODKRYTYCZNEGO Z CZYNNIKIEM AMONIAK 115
RYSUNEK Z. 84. PORÓWNANIE SPRAWNOŚCI OBIEGU NADKRYTYCZNEGO PRZY ZAŁOŻENIU CIŚNIENIA
GRANICZNEGO WZGLĘDEM OBIEGU PODKRYTYCZNEGO Z CZYNNIKIEM AMONIAK 115
RYSUNEK Z. 85. PORÓWNANIE MOCYPOMPOWANIA OBIEGU NADKRYTYCZNEGO PRZY ZAŁOŻENIU
CIŚNIENIA MINIMALNEGO WZGLĘDEM OBIEGU PODKRYTYCZNEGO Z CZYNNIKIEM AMONIAK 116
RYSUNEK Z. 86. PORÓWNANIE MOCYPOMPOWANIA OBIEGU NADKRYTYCZNEGO PRZY ZAŁOŻENIU
CIŚNIENIA POŚREDNIEGO WZGLĘDEM OBIEGU PODKRYTYCZNEGO Z CZYNNIKIEM AMONIAK 116
RYSUNEK Z. 87. PORÓWNANIE MOCY POMPOWANIA OBIEGU NADKRYTYCZNEGO PRZY ZAŁOŻENIU
CIŚNIENIA GRANICZNEGO WZGLĘDEM OBIEGU PODKRYTYCZNEGO Z CZYNNIKIEM AMONIAK 116
RYSUNEK Z. 88. PORÓWNANIE NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO OBIEGU NADKRYTYCZNEGO
PRZY ZAŁOŻENIU CIŚNIENIA MINIMALNEGO WZGLĘDEM OBIEGU PODKRYTYCZNEGO Z CZYNNIKIEM
AMONIAK
RYSUNEK Z. 89. PORÓWNANIE NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO OBIEGU NADKRYTYCZNEGO
PRZY ZAŁOŻENIU CIŚNIENIA POŚREDNIEGO WZGLĘDEM OBIEGU PODKRYTYCZNEGO Z CZYNNIKIEM
AMONIAK
RYSUNEK Z. 90. PORÓWNANIE NATĘŻENIA PRZEPŁYWU CZYNNIKA ROBOCZEGO OBIEGU NADKRYTYCZNEGO
PRZY ZAŁOŻENIU CIŚNIENIA GRANICZNEGO WZGLĘDEM OBIEGU PODKRYTYCZNEGO Z CZYNNIKIEM
AMONIAK
RYSUNEK Z. 91. POTRZEBY WŁASNE SIŁOWNI W ZALEŻNOŚCI OD ZADANEGO CIŚNIENIA GÓRNEGO PRZY
TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ T _{N1} =95°C
RYSUNEK Z. 92. POTRZEBY WŁASNE SIŁOWNI W ZALEŻNOŚCI OD ZADANEGO CIŚNIENIA GÓRNEGO PRZY
TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ T _{N1} =115°C118
RYSUNEK Z. 93. POTRZEBY WŁASNE SIŁOWNI W ZALEŻNOŚCI OD ZADANEGO CIŚNIENIA GÓRNEGO PRZY
TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ T _{N1} =135°C 118
RYSUNEK Z. 94. POTRZEBY WŁASNE SIŁOWNI W ZALEŻNOŚCI OD ZADANEGO CIŚNIENIA GÓRNEGO PRZY
TEMPERATURZE PARY NA WLOCIE DO TURBINY WYNOSZĄCEJ T _{N1} =155°C 119
RYSUNEK Z. 95. WYKRES SPRAWNOSCI SIŁOWNI W FUNKCJI PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO DLA
CZYNNIKA R1234YF PRZY TEMPERATURZE ZRODŁA CIEPŁA WYNOSZĄCEJ 120°C 127
RYSUNEK Z. 96. WYKRES SPRAWNOSCI W FUNKCJI PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO DLA
CZYNNIKA R1234YF PRZY TEMPERATURZE ŻRÓDŁA CIEPŁA WYNOSZĄCEJ 140°C 127
RYSUNEK Z. 97. WYKRES SPRAWNOSCI W FUNKCJI PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO DLA
CZYNNIKA R227EA PRZY TEMPERATURZE ŻRÓDŁA CIEPŁA WYNOSZĄCEJ 140°C 128

RYSUNEK Z. 98. WYKRES SPRAWNOŚCI W FUNKCJI PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO DLA	
CZYNNIKA R236FA PRZY TEMPERATURZE ŹRÓDŁA CIEPŁA WYNOSZĄCEJ 140°C	128
RYSUNEK Z. 99. WYKRES SPRAWNOŚCI W FUNKCJI PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO DLA	
CZYNNIKA R236FA PRZY TEMPERATURZE ŹRÓDŁA CIEPŁA WYNOSZĄCEJ 160°C	129
RYSUNEK Z. 100. WYKRES SPRAWNOŚCI W FUNKCJI PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO DLA	
CZYNNIKA IZOBUTAN PRZY TEMPERATURZE ŹRÓDŁA CIEPŁA WYNOSZĄCEJ 160°C	129
RYSUNEK Z. 101. WYKRES SPRAWNOŚCI W FUNKCJI PRZYJĘTEJ WARTOŚCI CIŚNIENIA GÓRNEGO DLA	
CZYNNIKA BUTAN PRZY TEMPERATURZE ŹRÓDŁA CIEPŁA WYNOSZĄCEJ 160°C	130